72d52a5fd46e6978a10aed5cac501397.jpg

Приложение. методические указания по определению размера платы за технологическое присоединение к электрическим сетям

СОДЕРЖАНИЕ
0
3 просмотров
14 февраля 2020

Как увеличить выделенную мощность?

К сожалению, нормы потребления электрической энергии не успевают за ростом активной нагрузки. В жилых помещениях появляется все больше бытовых энергопринимающих устройств, одновременная работа которых вызывает срабатывание тепловой защиты вводного АВ. Из сложившейся ситуации есть только два выхода:

  1. Снизить бытовое потребление путем отказа единовременной работы части оборудования, что может внести определенный дискомфорт.
  2. Обратиться к поставщику электроэнергии за выделением дополнительных мощностей.

Поскольку потреблять электроэнергию в меньшем объеме не выход, последний вариант наиболее рационален. Рассмотрим, как увеличить объем электроэнергии частным и юридическим лицам. Начнем с первых.

Для частного лица

Алгоритм действий можно условно разбить на следующие этапы:

  1. Подготовка необходимых документов.
  2. Составления проекта электрификации жилого объекта.
  3. Процесс согласования разработанного проекта с компанией предоставляющей услуги на предмет возможности технологического присоединения или увеличения электрической мощности.
  4. Одобрение проекта в местном органе Энергонадзора.
  5. Осмотр электроустановки с последующим составлением соответствующего отчета и акта-допуска, подтверждающего готовность объекта к эксплуатации при новых условиях электроснабжения энергопринимающих установок. Отчет составляется сотрудником электрокомпании, акт-допуск – представителем Энергонадзора.
  6. Оформленные документы направляются электрокомпании, после чего она увеличивает величину допустимой нагрузки (выделяемой мощности).

Теперь перечислим пакет необходимых документов, они практически идентичны тем, что нужны при подключении электричества:

  • Документы собственника жилого дома, подтверждающие его личность и права на недвижимое имущество.
  • Справка, где указывается текущая величина электрической нагрузки. Как уже упоминалось выше, ее необходимо получить в компании, осуществляющей поставки электроэнергии.
  • Договор с поставщиком услуг, где прописана стоимость электроэнергии и текущий объем ее потребления.
  • Акт разграничения эксплуатационной ответственности.
  • План помещений и проект электрификации. Если его заказывать, то за него придется заплатить порядка $200 — $1000.

Как правило, компания занимающаяся разработкой проекта одновременно предлагает услуги по его реализации. В некоторых случаях имеет смысл воспользоваться их помощью, чтобы не терять время.

Для юридических лиц и предприятий

Технически процедура выделения дополнительной мощности для юрлиц и частников практически ничем не отличается. Разница заключается в пакете необходимых документов. Например, вместо документов подтверждающих личность необходимо подготовить учредительные документы.

Каждая справка, договор, ксерокопия документа и т.д. должны быть заверены круглой печатью предприятия-потребителя и подписью ответственного лица.

Важно ознакомиться:

  • Способы уменьшения потерь передаваемой электроэнергии
  • Расчет потребляемой мощности по току и напряжению
  • Что такое качество электроэнергии?
  • Способы передачи электрической энергии

Выделенная мощность электроэнергии

Рис. 2. Структурная схема ЭПУ

Модуль контроля и управления SM7является основным устройством, осуществляющим функции слежения за соответствием заданным допуска параметров ЭПУ и выдачи соответствующих аварийных сообщений. SM7 производит измерения параметров и соответствующим образом реагирует на них.

Модуль сконфигурирован до ввода в эксплуатацию. Параметры конфигурации записываются в EEPROM (энергозависимое ПЗУ) и каждый раз активируются при включении аппаратуры. Параметры конфигурации защищены паролем и доступны только специалистам фирмы V&H, имеющим доступ. Все допуски и рабочие параметры инициализируются после загрузки данных конфигурации.

Параметры ЭПУ, записанные в энергонезависимое ПЗУ, представлены в табл. 1.

Таблица 1

Наименование параметра SVS8 SVS5
Номинальное напряжение, В
Тип аккумуляторов А-400 А-500
Ёмкость аккумуляторов, А·ч
Напряжение тестирования батарей, В/эл. 2,06
Напряжение постоянного подзаряда аккумуляторов, В/эл. 2,271) 2,301)
Напряжение ускоренного заряда аккумуляторов, В/эл. 2,331) 2,401)
Напряжение нагрузки, верхняя граница, В
Напряжение нагрузки, нижняя граница, В
Напряжение отключения батареи, В
Граница напряжения ускоренного заряда, В
Время заряда батареи, ч
Задержка сообщения SV2, мин
Минимальное время разряда батарей, мин
Максимальное напряжение асимметрии батареи, В 2,0
Напряжение окончания батарейного теста, В 472)
Максимальная температура батареи, °С
Минимальная температура батареи, °С
Температурный коэффициент, мВ/эл. 51) 31)
Период запуска автоматического теста батареи, дней
Длительность автоматического и ручного теста батареи, а также при асимметрии элементов батареи, мин 102)

1) Устанавливается в соответствии с рекомендациями изготовителя аккумуляторов.

2) Уточняется по результатам пусковых испытаний.

Модуль имеет встроенный ЖК-дисплей, 3 кнопки управления и 2 световых индикатора (норма – зелёный, отказ – красный). Все события записываются в память и могут быть оперативно считаны. Объем памяти рассчитан на 20 сообщений.

Коды сообщений об авариях, отказах, нарушении норм и других отклонений от нормального состояния ЭПУ приведены в табл. 3.

Таблица 3

Код отказа Описание отказа Код устранения отказа
Авария сети переменного тока
Авария выпрямительного модуля
Нет работающего выпрямительного модуля
Авария внешнего оборудования 1
Напряжение на нагрузке – выше нормы
Напряжение на нагрузке – ниже нормы
Напряжение 1-й батареи ниже нормы
Асимметрия аккумуляторной батареи
Аккумуляторная батарея отключена
Устройство защиты нагрузки разомкнуто
Предохранитель батареи разомкнут
Зафиксирован отказ SV1, (отказ SV1 устранен)
Зафиксирован отказ SV2, (отказ SV2 устранена)
Активизирован режим отказ тестирования
Активизирован режим отказ непрерывного подзаряда
Активизирован режим ускоренного заряда

РЕЖИМЫ РАБОТЫ

В установке используется автоматизированная система питания, состоящая из разных режимов работы (рис. 3).

1. Режим непрерывного подзаряда

Режим непрерывного подзаряда является основным режимом установки. Установка предназначена для работы в буферной системе питания, когда на выходе выпрямительных модулей всегда подключена заряженная аккумуляторная батарея. Батарея является резервным источником питания и получает небольшой ток подзаряда компенсирующий саморазряд.

Напряжение подзаряда зависит от типа применяемых аккумуляторов и находится в диапазоне 2,21–2,30 В/эл.

Схемы построения

Чаще всего встречаются двухузловые HA-кластеры – это минимальная конфигурация, необходимая для обеспечения отказоустойчивости. Но часто кластеры содержат намного больше, иногда десятки узлов. Все эти конфигурации, как правило, могут быть описаны одной из следующих моделей:

  • Active / active — Часть трафика, обрабатывавшаяся отказавшим узлом, перенаправляется какому-либо работающему узлу или распределяется между несколькими работающими узлами. Такая схема используется в случае, когда узлы имеют однородную конфигурацию программного обеспечения и выполняют одинаковую задачу.
  • Active / passive — Имеет полное резервирование (работоспособную копию) каждого узла. Резерв включается в работу только тогда, когда отказывает соответствующий основной узел. Эта конфигурация требует значительных избыточных аппаратных средств.
  • N + 1 — Имеет один полноценный резервный узел, к которому в момент отказа переходит роль отказавшего узла. В случае гетерогенной программной конфигурации основных узлов дополнительный узел должен быть способен взять на себя роль любого из основных, за резервирование которых он отвечает. Такая схема применяется в кластерах, обслуживающих несколько разнородных сервисов, работающих одновременно; в случае единственного сервиса такая конфигурация вырождается в Active / passive.
  • N + M — Если один кластер обслуживает несколько сервисов, включение в него единственного резервного узла может оказаться недостаточным для надлежащего уровня резервирования. В таких случаях в кластер включается несколько резервных серверов, количество которых является компромиссом между ценой решения и требуемой надёжностью.
  • N-к-1 — Позволяет резервному узлу включаться в работу временно, пока отказавший узел не будет восстановлен, после чего исходная нагрузка возвращается на основной узел для сохранения исходного уровня доступности системы.
  • N-к-N — это сочетание active / active и N + M кластеров. В N-к-N кластере сервисы, экземпляры систем или соединения от отказавшего узла перераспределяются между остальными активными узлами. Тем самым устраняется (как в схеме active / active) необходимость отдельного резервного узла, но при этом все узлы кластера должны обладать некоторой избыточной мощностью сверх минимально необходимой.

Термины логический хост или кластерный логический хост используются для обозначения сетевого адреса, который используется для доступа к сервисам, предоставляемым кластером. Идентификатор логического хоста не привязан к одному узлу кластера. Это на самом деле сетевой адрес / имя, которые связаны с сервисом (ами), предоставленным кластером. Если узел кластера с, например, работающей базой данных выходит из строя, база данных будет перезапущена на другом узле кластера, и сетевой адрес, по которому пользователи получают доступ к базе данных, сохранится для любого нового узла, так что пользователи сохранят доступ к базе данных.

Что такое расчетная мощность

Не только в новых, но и в старых домах владельцы жилья подключают новые виды бытовой техники и оборудования. Увеличение нагрузки может вызвать сбои в работе электрической сети, поэтому вопрос мощности подведенного кабеля нужно выяснить заранее. Эту информацию можно найти в акте разграничения балансовой ответственности или в справке о разрешенных мощностях, где указывается конкретная расчетная и установленная мощность.

Определение расчетной мощности известно также как мощность одновременного включения. Данный параметр указывает на возможное подключение установленного количества потребителей, имеющихся в квартире. В случае включения излишнего оборудования, автоматические защитные устройства просто выйдут из строя. Сумма мощностей всех приборов будет соответствовать установленной мощности. Однако в случае одновременного включения, в сети возникнут значительные перегрузки, что приведет к срабатыванию защитных устройств. Именно средства защиты позволяют установить определенный предел нагрузки, разрешенный для конкретного жилья.

Во многом значение расчетной мощности зависит от ввода. Каждая лестничная площадка оборудуется электрощитком с вводным автоматом, через который осуществляется ввод в квартиру кабеля с необходимым сечением. После этого внутри помещения размещаются все остальные элементы системы электроснабжения, в том числе и щит с устройствами распределения нагрузки по отдельным линиям.

В большинстве домов старой постройки подключено однофазное питание с напряжением 220 В. Именно такое подключение препятствует чрезмерной нагрузке на линию и не дает возможности подключения всех современных приборов. Эта проблема решается с помощью трехфазного ввода на 380 вольт. Он состоит из трех линий, перераспределяющих на себя общую нагрузку. В случае интенсивного энергопотребления происходит равномерное распределение нагрузки на каждую фазу.

Поэтому прежде чем планировать приобретение бытовой техники и оборудования, необходимо заранее выяснить, какой ток подведен в квартиру. Если подведены три фазы, то никаких проблем не будет, поскольку на один ввод приходится от 14 до 20 кВт, что позволяет свободно подключать все необходимые приборы. Однако в старых постройках с однофазным вводом и алюминиевым кабелем, максимальная мощность нагрузки составляет всего 4 кВт. В этом случае об использовании каких-либо устройств, кроме освещения не может быть и речи. Потребуется выделение дополнительной мощности, и по данному вопросу необходимо обращаться в соответствующие службы.

Как узнать, сколько мощности выделено?

Те, кто не знает объем разрешенной мощности для дома или квартиры, может воспользоваться следующими способам получения информации:

  1. Взять справку в энергоснабжающей компании. Следует учитывать, такая услуга считается платной, например в Мосэнергосбыте за нее придется заплатить от 1,3 до 3,1 тыс. рублей, в зависимости от категории жилого объекта.
  2. Поискать нужный параметр в договоре на энергоснабжение или ТУ.
  3. Получить информацию эмпирическим путем, посмотрев параметры вводного защитного устройства. Дело в том, что оно в большинстве случаев, помимо своих прямых функций, играет роль ограничителя мощности. Чтобы установить ее максимальное значение, достаточно узнать рабочий ток автомата.

Параметры рабочего тока (отмечены красным)

На рисунке показан диффавтомат с рабочим током 32 А (Iном). Следовательно, максимально допустимую мощность нагрузки можно вычислить по формуле: Pмакс = U x Iном х 0,8; где U – номинальное напряжение сети. Следовательно, 230 х 32 х 0,8 ≈ 5,5 кВт.

Из всех представленных вариантов самый надежный – первый, тем более справка все равно будет нужна, если планируется увеличение выделенной мощности (она входит в пакет необходимых документов).

Расчету, основанному на рабочем токе вводного автомата, не стоит слишком доверять. Некоторые модели современных электронных счетчиков имеют встроенное реле нагрузки. В таких случаях номинальный ток автомата может быть завышен.

Сколько киловатт нужно для отопления дома?

Главными потребителями электрического тока в домах, являются освещение, приготовление еды, отопление и горячая вода.

В холодный период, важно обратить внимание на отопление дома. Электрическое отопление в доме, может быть нескольких видов:

  • водяное (батареи и котел);
  • чисто электрическое (конвектор, теплый пол);
  • комбинированное (теплый пол, батареи и котел).

Давайте рассмотрим, варианты электрического отопления и расход электроэнергии.

  1. Отопление с помощью котла. Если планируется установка электрокотла, то выбор должен падать на трехфазный котел. Система котла одинаково разделяет электрическую нагрузку на фазы. Производители выпускают котлы с разной мощностью. Чтобы правильно его подобрать можно сделать упрощенный расчет, площадь дома разделить на 10. Например, если дом имеет площадь 120 м2, то для отопления понадобится котел мощностью 12 кВт. Чтобы сэкономить на электроэнергии нужно установить двухтарифный режим использования электроэнергии. Тогда ночью котел будет работать по экономному тарифу. Также в дополнении к электрокотлу нужно установить буферную емкость, которая в ночное время будет накапливать теплую воду, а днем раздавать на отопительные приборы.
  2. Конвекторное отопление. Как правило, конвектора устанавливаются под окна и подключают напрямую в розетку. Их количество должно соответствовать наличию окон в комнате. Специалисты рекомендуют посчитать общую сумму, на расходную мощность всех обогревательных приборов и одинаково распределить ее по всем трем фазам. Например, к первой можно подключить обогрев одного этажа. К другой фазе, весь второй этаж. К третьей фазе, присоединить кухню и санузел.Сегодня конвектора обладают усовершенствованными функциями. Так можно устанавливать желаемую температуру и выбирать время на обогрев. Для экономии можно устанавливать время и дату работы конвектора. На приборе установлена возможность «мультитарифа», которая включает обогреватель, на нужную мощность или в льготный тариф (после 23–00 и до 8–00). Расчет энергии для конвекторов аналогичен котлу в предыдущем пункте.
  3. Отопление с помощью теплого пола. Очень удобный вариант отопления, так как можно для каждой комнаты устанавливать желаемую температуру. В месте установки мебели, холодильника, а также ванной, монтировать теплый пол не рекомендуется. Как показывают расчеты, дом в 90 м2 с установленным конвектором и теплым полом, на одном этаже, расходует от 5,5 до 9 кВт электроэнергии.

Максимальная мощность и разрешенная или единовременная нагрузка

Понятия «максимальная мощность» и «разрешенная нагрузка», «единовременная нагрузка» судами принимаются как идентичные.

Пример

Тринадцатый арбитражный апелляционный суд в постановлении от 03.09.2014 по делу № А56-72431/2013 признал, что разрешенную нагрузку следует использовать при отнесении потребителя к определенной ценовой категории.

Потребитель и Пушкинское предприятие электрических сетей заключили в январе 1994 г. договор энергоснабжения объекта. На тот момент предприятие являлось энергоснабжающей организацией. В приложение к договору внесли значение разрешенной нагрузки для энергопринимающего устройства потребителя – 850 кВА. Это характеризует само устройство, а не конкретную точку поставки. Значит, определяя ценовую категорию, гарантирующий поставщик должен ориентироваться на указанную величину. Понятие максимальной мощности на тот момент еще не существовало, Правила № 861 были приняты только через 10 лет. По сути, в этом договоре разрешенная нагрузка является максимальной мощностью.

Рассматривая дело № А40-155596/14, Арбитражный суд Московского округа признал правомерным отнесение потребителя к категории, где максимальная мощность энергопринимающих устройств равна 670 кВт и более. Суд исходил из приведенной в акте разграничения балансовой принадлежности и эксплуатационной ответственности и приложении к договору энергоснабжения величины установленной мощности 1820 кВА при единовременной нагрузке 1267 кВА (постановление Арбитражного суда Московского округа от 13.10.2015 № Ф05-13534/2015).

Вывод о том, что величина единовременной нагрузки соответствует максимальной мощности энергопринимающих устройств, сделан также Девятым арбитражным апелляционным судом в постановлении от 10.10.2014 № 09АП-38152/2014 по делу № А40-26115/2014 и Десятым арбитражным апелляционным судом в постановлении от 27.10.2014 по делу № А41-31139/14.

Правила и нормативы

Электрификация любого объекта осуществляется в соответствии с ТУ, разработанными кампанией, предоставляющей услуги электроснабжения. В одном из пунктов данного документа указываются параметры выделяемой мощности для сети потребителя. Энергоснабжающая компания формирует ТУ на основании заявленной мощности, обоснованной расчетами.

При электрификации жилых и общественных зданий руководствуются СП 31 110 2003 и временной инструкцией PM 2696 01. Согласно данным документам жилые дома, относящиеся к 1-й категории, не нормируются по выделению мощности. То есть, если имеется техническая возможность, то ТУ на подключение таких объектов формируется на основании поданной заявки.

Для жилых домов 2-й категории предусмотрено две нормы электрификации:

  1. 5 – 7 кВт, на частный дом или квартиру, с газовыми плитами.
  2. 8 – 11 кВт – с электрическими плитами.

При этом нижний порог выделения мощности предусмотрен для малогабаритных квартир в домах, строящихся по программе социального жилья. Заметим, что эти нормы установлены относительно недавно, для электроустановок жилых объектов, построенных до 2006 года, они были ниже.

Надежность отдельного узла

HA-кластеры, кроме описанных схем межузлового резервирования, используют и все методы, обычно применяемые в отдельных (некластерных) системах и сетевой инфраструктуре для максимального повышения надёжности. К ним относятся:

  • Резервирование и репликацию дисков: отказ части внутренних дисков не приводит к сбоям системы. DRBD является одним из примеров.
  • Резервирование внешних сетевых соединений: повреждения кабеля, отказ коммутатора или сетевого интерфейса не приводят к полному отключению от сети.
  • Резервирование внутренних соединений cети хранения данных (SAN): повреждения кабеля, сбой коммутатора или сетевого интерфейса не приведут к потере соединения серверов с хранилищем (это нарушило бы неразделяемую архитектуру).
  • Избыточные схемы электропитания различного оборудования, как правило, защищённого источниками бесперебойного питания, и резервируемые блоки питания: отказ единичного ввода, кабеля, UPS или БП не приводит к критическому отказу питания системы.

Меры по обеспечению бесперебойной работы отдельного узла помогают свести к минимуму вероятность обращения к механизмам собственно отказоустойчивой кластеризации. В случае задействования последних доступ к сервису может прерываться, хотя бы и ненадолго, и целесообразнее предупреждать критические отказы оборудования.

Максимальная и единовременная мощности

Когда в документах о технологическом присоединении указывается единовременная мощность, суды решают, что максимальная мощность соответствует этой величине.

Пример

Девятый арбитражный апелляционный суд в деле № А40-127374/13 руководствовался следующим.

В реестре за потребителем закреплена единовременная мощность 1860 кВа. Из понятия максимальной мощности, установленного п. 2 Правил № 861, следует, что это мощность, определенная к одномоментному использованию энергопринимающими устройствами. Слово «одномоментное» судом определено как синоним слова «единовременное». Также, по мнению суда, у этих понятий одинаковый физический смысл применительно к величине мощности: это величина мощности, которую сетевая организация разрешила потребителю использовать в каждую единицу времени.

Документы, подтверждающие иную величину мощности, ответчик в адрес энергоснабжающей организации не направлял, соответствующие изменения в договор энергоснабжения не внесены. Суд посчитал правомерным применить в качестве максимальной мощности единовременную (разрешенную) мощность (постановление Девятого арбитражного апелляционного суда от 02.10.2014 № 09АП-25025/2014 по делу № А40-127374/13).

В постановлении от 30.10.2014 № 09АП-42877/2014 по делу № А40-76744/2014 Девятый арбитражный апелляционный суд также указал на соответствие величин единовременной мощности и максимальной мощности.

Интерактивные деревья классификации и регрессии

В дополнение к модулям для автоматического построения деревьев (Общие деревья классификации и регрессии, Общие CHAID модели), STATISTICA Data Miner содержит инструменты для построения некоторых деревьев интерактивно. Вы можете выбрать (бинарный) метод Общие деревья классификации и регрессии или метод CHAID на каждом шаге роста дерева (выбирая переменную разделения и критерий разделения) интерактивно или автоматически.

Когда рост дерева происходит интерактивно, вы имеете полный контроль над всеми аспектами – выбор и оценка кандидатов для каждого разделения, категоризация диапазона значений предикторов и т. д.

Высоко интерактивные инструменты, доступные для этого модуля, позволяют вам растить и усекать деревья для быстрой оценки качества дерева классификации или регрессии и вычислять все вспомогательные статистики на каждом шаге для полноценного исследования природы каждого решения.

Этот инструмент особенно полезен как для Data Mining, так и для разведочного анализа данных (EDA), он включает полный набор опций для автоматического развертывания – для прогноза и классификации новых переменных (см. описание этих опций в контексте модулей CHAID и Общие деревья классификации и регрессии).

Что такое «выделенная мощность электроэнергии»?

Если объяснять значение это термина простым языком, то выделенная (или разрешенная) мощность это максимально допустимая нагрузка на сеть потребителя. Она устанавливается в соответствии с действующими нормами и указывается в договоре электроснабжения.

Тем, кто хочет детально разобраться в этом вопросе, должен иметь представление о присоединенной, установленной, единовременной и разрешнной мощности. Дадим краткое определение каждой из них:

  • Присоединенная, под данным термином подразумевается суммарная установленная мощность всех электроприемников, запитаных от сети потребителя.
  • Установленная – номинальная активная мощность, указанная в технической документации к электрооборудованию, то есть та, при которой устройства потребителя будут работать в штатном режиме.
  • Единовременная – расчетная величина потребляемой мощности оборудования электроустановки за определенное время.
  • Выделенная (разрешенная) – максимальна единовременная мощность, которую потребитель может подключить к сети энергоснабжающей компании. Данный параметр указывается в ТУ на присоединение энергопринимающих объектов и в договоре между потребителем и организацией, поставляющей электроэнергию.

Общие модели CHAID (Chi-square Automatic Interaction Detection)

Подобно реализации модуля Общие деревья классификации и регрессии, другой рекурсивный метод разделения, модуль CHAID, обеспечивает не только реализацию оригинального метода, но и может быть расширен до методов анализа ANOVA/ANCOVA.

Стандартный CHAID

Анализ CHAID может быть проведен для непрерывных и категориальных зависимых переменных. Доступны многочисленные функциональные возможности контроля процесса построения деревьев. Пользователь имеет контроль над параметрами минимальное число n в узле, максимальное число узлов, вероятность для разделения и объединения категорий. Пользователь может задать полный поиск лучшего решения (Полный CHAID). Статистики V-кратной кросс-проверки могут быть вычислены для оценивания устойчивости итогового решения. Для задач классификации пользователь может задать цены ошибок классификаций.

ANOVA/ANCOVA-подобные планы

В дополнение к традиционному CHAID анализу вы можете комбинировать непрерывные и категориальные переменные в ANOVA/ANCOVA-подобных планах и выполнять анализ, используя матричный план для предикторов. Это позволяет Вам оценивать и сравнивать сложные модели предикторов и их эффективность для прогнозирования и классификации, используя различные аналитические методы (GLM, GLZ, GDA, GTrees).

Обозреватель деревьев

Как и для других деревьев (см. GTrees), результаты анализа CHAID могут быть просмотрены в Обозревателе деревьев STATISTICA. Этот уникальный обозреватель предоставляет высокоэффективное и интуитивно понятное средство просмотра сложных структур деревьев и сравнения одновременно нескольких деревьев (в нескольких обозревателях).

Итоговые статистики

Модуль Общие CHAID модели предоставляет обширный набор инструментов для изучения итоговых результатов. Итоговые результаты доступны для каждого узла, а также детальные статистики, относящиеся к классификации, цены классификации, прибыль и другие. Также доступны уникальные графические представления итогов анализа, включая гистограммы (специализированные для задач классификации) каждого узла, детальные составные графики непрерывных зависимых переменных (нормальный вероятностный график, диаграмма рассеяния) и графики с параллельными координатами для каждого узла, предоставляющие эффективные шаблоны откликов для задач классификации. Как и для всех статистических модулей анализа в STATISTICA, все численные результаты могут быть использованы как промежуточные для проведения последующих анализов, позволяя вам быстро исследовать и в дальнейшем анализировать наблюдения, классифицированные в соответствующие узлы (например, Вы можете использовать модуль CHAID для проведения начальной классификации и далее использовать лучшее подмножество переменных в GDA для поиска дополнительных переменных, которые могут помочь в дальнейшей классификации).

Присоединенная мощность

Для предприятий с присоединенной мощностью 100 ква и более расчеты за израсходованную энергию производятся по двухставочному тарифу, который включает основную плату за суммарную присоединительную мощность трансформаторов, независимо от потребленной энергии, и дополнительную плату за каждый киловатт-час, учтенный счетчиком.

Скидки и надбавки к тарифам за компенсацию реактивной мощности в сетях потребителей с присоединенной мощностью менее 750 кВ – А.

Для потребителей с присоединенной мощностью менее 750 кВ – А скидку или надбавку, %, определяют по шкале ( табл. 3.1) в зависимости от соотношения фактической мощности КУ, установленного у потребителя, С.

Для потребителей с присоединенной мощностью выше 7БО кВ А, к которым относятся тяговые подстанции, при определении скидок и надбавок исходят из наибольшей реактивной мощности Рф, передаваемой от энергосистемы в течение 30 мин в период максимума ее активной нагрузки, и средней реактивной мощности, передаваемой из сети или генерируемой в сеть энергосистемы за период ее наименьшей активной нагрузки. Периоды наибольших и наименьших активных нагрузок устанавливаются энергоснабжающей организацией.

Для предприятий с присоединенной мощностью менее 750 кВ – А скидки и надбавки к тарифу за компенсацию реактивной мощности установлены в зависимости от отклонения мощности компенсирующих устройств потребителя энергии по отношению к заданной энергоснабжающей организацией и зафиксированной в договоре на отпуск электроэнергии.

Для потребителей с присоединенной мощностью 750 кВ – А и выше при определении скидок и надбавок за основу принимается наибольшая реактивная мощность, передаваемая из сетей энергосистемы в течение получаса в период максимума активной нагрузки энергосистемы, и средняя реактивная мощность, передаваемая из сети или генерируемая в сеть энергосистемы за период ее наименьшей нагрузки.

Для потребителей с присоединенной мощностью до 750 кВ А при определении скидок и надбавок за основу принимается отклонение мощности компенсирующих устройств, применяемых потребителем, от величины, заданной энергоснабжающей организацией, и несоблюдение установленного периода работы компенсирующего устройства.

У потребителей с присоединенной мощностью 100 кВ – А и более должны быть установлены счетчики реактивной энергии.

Предприятия водопровода с присоединенной мощностью до 100 ква оплачивают по одноставочному тарифу только за отпущенную электроэнергию в киловатт-часах, учтенную счетчиками.

В графе 14 – присоединенная мощность Р р, потребителя электроэнергии, под которой понимается мощность, потребляемая токоприемником ( потребителем) из сети ( в частности электродвигателем) при работе его с полной нагрузкой.

Если годовую оплату за присоединенную мощность сложить с годовой оплатой за электроэнергию и добавить расходы на содержание энергохозяйства, то получим общую сумму расходов за год.

Для всех потребителей с присоединенной мощностью 750 кВ – А и более должно быть рассчитано удельное снижение потерь мощности в сети 35 кВ и выше энергосистемы в часы ее максимальной нагрузки при использовании КУ в данном нагрузочном узле.

Для промышленных предприятий с присоединенной мощностью менее 750 кВ – А мощность компенсирующих устройств QK задается энергосистемой.

Для промышленных потребителей с общей присоединенной мощностью ниже 50 ква и для электрического транспорта применяется одноставочный тариф, предусматривающий оплату за активную энергию, учтенную счетчиком. В различных энергетических системах тарифы на электроэнергию строятся в соответствии с себестоимостью энергии в данной системе.

Основная плата за 1 кВт присоединенной мощности 36 руб., дополнительная за 1 кВт – ч потребленной энергии 1 коп.

Список источников

  • wiki.bio
  • www.asutpp.ru
  • electric-220.ru
  • www.ngpedia.ru
  • sunapse.ru
  • heatting.ru
  • akrchel.ru
  • statsoft.ru

Похожие статьи

Комментировать
0
3 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector