Удельные тепловые потери здания
Существует много способов расчета тепловых потерь здания, один из них – в предложенной ниже таблице.
Таблица « Удельные тепловые потери для основных охлаждающихся поверхностей в жилых зданиях»:
Вид стен и охлаждающихся поверхностей |
Количество теряемого тепла (Вт/ккал/ч) через 1 м2 поверхности стен по внутреннему обмеру помещения при средней температуре наиболее холодной пятидневки (°С) |
|||
24-25 |
25-26 |
28-29 |
30-31 |
|
Кирпичная стена толщиной в три с половиной кирпича (93 см), оштукатуренная с двух сторон | ||||
Угловые помещения | 61/53 | 66/57 | 69/60 | 71/61 |
Смежные с другими помещения | 55/48 | 59/51 | 61/53 | 64/55 |
Угловые помещения | 54/47 | 58/50 | 61/53 | 62/54 |
Смежные с другими помещения | 50/43 | 52/45 | 54/47 | 55/48 |
Кирпичная стена толщиной в три кирпича (80 см), оштукатуренная с двух сторон | ||||
Угловые помещения | 66/57 | 71/61 | 74/64 | 75/65 |
Смежные с другими помещения | 64/55 | 67/58 | 71/61 | 72/62 |
Угловые помещения | 61/53 | 65/56 | 68/59 | 69/60 |
Смежные с другими помещения | 56/49 | 60/52 | 62/54 | 63/55 |
Кирпичная стена толщиной в два с половиной кирпича (67 см), оштукатуренная с двух сторон | ||||
Угловые помещения | 75/65 | 82/71 | 86/74 | 88/76 |
Смежные с другими помещения | 74/64 | 80/69 | 82/71 | 84/73 |
Угловые помещения | 69/60 | 74/64 | 77/67 | 79/68 |
Смежные с другими помещения | 65/57 | 71/61 | 74/64 | 75/65 |
Кирпичная стена толщиной в два кирпича (54 см), оштукатуренная с двух сторон | ||||
Угловые помещения | 90/78 | 96/83 | 101/87 | 103/89 |
Смежные с другими помещения | 89/77 | 95/82 | 100/86 | 101/87 |
Угловые помещения | 81/70 | 87/75 | 90/78 | 93/80 |
Смежные с другими помещения | 79/68 | 86/74 | 88/76 | 90/78 |
Деревянная рубленая стена из бревен, оштукатуренная с одной стороны, толщиной 20 см | ||||
Угловые помещения | 77/67 | 82/71 | 87/75 | 88/76 |
Смежные с другими помещения | 75/95 | 80/69 | 83/72 | 86/74 |
Угловые помещения | 68/59 | 74/64 | 77/67 | 79/69 |
Смежные с другими помещения | 66/57 | 72/62 | 74/64 | 76/66 |
Деревянная рубленая стена из бревен, оштукатуренная с одной стороны, толщиной 25 см | ||||
Угловые помещения | 60/52 | 65/56 | 67/58 | 69/60 |
Смежные с другими помещения | 59/51 | 62/54 | 66/57 | 67/58 |
Угловые помещения | 54/47 | 58/50 | 60/52 | 61/53 |
Смежные и другие помещения | 53/46 | 56/49 | 59/51 | 60/52 |
Деревянная брусковая стена, оштукатуренная с одной стороны, общей толщиной 12 см | ||||
Угловые помещения | /75 | /80 | /84 | /86 |
Смежные с другими помещения | /73 | /78 | /82 | /84 |
Угловые помещения | /67 | /71 | /74 | /76 |
Смежные с другими помещения | /65 | /70 | /73 | /75 |
Деревянная брусковая стена, оштукатуренная с одной стороны, общей толщиной 20 см | ||||
Угловые помещения | /47 | /50 | /52 | /53 |
Смежные с другими помещения | /46 | /49 | /51 | /52 |
Угловые помещения | /42 | /45 | /46 | /47 |
Смежные с другими помещения | /41 | /44 | /46 | /47 |
Окна с двойным остеклением (переплетами) и балконные двери | /100 | /103 | /112 | /115 |
Чердачное перекрытие | /26 | /28 | /29 | /30 |
Деревянные утепленные полы над подвалом или подпольем | /19 | /21 | /22 | /23 |
Тепловые потери зависят от многих факторов: теплонепроницаемости дверей, окон, стен, перекрытий и уличной температуры. Правильно выбранная печь должна соответствовать средней часовой теплоотдаче и такой же теплопотере.
Основные теплопотери через ограждающие конструкции
Основные теплопотери через ограждающие конструкции определяются по формуле:
Вт (4.1)
где к, Rогр – соответственно коэффициент теплопередаче и сопротивление теплопередаче ограждения, принимаются на основании расчетов из курсовой работы по дисциплине “Строительная теплофизика”;
А – расчетная площадь наружного ограждения, мІ;
n – поправочный коэффициент, учитывающий положение ограждения по отношению к наружному воздуху.
Для определения расчетной площади наружных ограждений линейные размеры принимаются следующим образом:
окна и двери – по наименьшим размерам строительных проемов в свету;
потолки и полы – по размерам между осями внутренних стен и внутренней поверхностью наружных стен.
Размеры наружных стен принимаются:
по плану – длина стен угловых помещений по внешней поверхности от наружного угла до оси внутренней стены, для неугловых помещений – между осями внутренних стен;
по разрезу – высота стен;
на первом этаже (в зависимости от конструкции пола) от внешней поверхности пола, расположенного непосредственно на грунте, или от нижнего уровня подготовки под конструкцию пола на лагах, или от нижней поверхности перекрытия над холодным пространством (подпольем, подвалом, проездом) до уровня чистого пола второго этажа;
на средних этажах – от поверхности пола этажа до поверхности пола вышележащего;
на верхнем этаже – от поверхности пола до верха конструкции чердачного перекрытия или бесчердачного перекрытия.
При определении теплопотерь через наружную стену, имеющее окно, площадь окна не вычитается из площади стены, а вычитается из коэффициента теплопередачи окна коэффициент теплопередачи стены разность “Ко – Кст“.
При определении теплопотерь через наружную дверь, ее площадь вычитается из площади стены, так как добавки к основным теплопотерям для стены и двери имеют различные значения.
Таблицы для расчета тепловых потерь дома
Таблица «К — коэффициент теплопередачи»:
Конструкция |
Толщина конструкции, мм |
К, Вт/ (м2 х °С) |
|
Кирпичная стена (на холодном растворе с внутренней штукатуркой) толщиной | в 1,5 кирпича | 395 | 1,5 |
в 2 кирпича | 525 | 1,24 | |
в 2,5 кирпича | 655 | 1,04 | |
Рубленые деревянные стены из бревен диаметром, мм | 200 | 160 | 1,02 |
240 | 200 | 0,85 | |
Брусчатые деревянные стены | 150 | 1,0 | |
200 | 0,76 | ||
Чердачное деревянное перекрытие | 100 | 1,0 | |
Двойные окна | — | 2,68 | |
Двойные двери | — | 2,33 |
Таблица « n — коэффициент уменьшения»:
Наименование ограждения |
n |
Полы на грунте и лагах | 1,0 |
Чердачные перекрытия при стальной, черепичной или асбестоцементной кровлях при разреженной обрешетке и бесчердачные покрытия с вентилируемыми продухами | 0,9 |
То же для перекрытий по сплошному настилу | 0,8 |
Чердачные перекрытия при кровлях из рулонных материалов | 0,75 |
Ограждения, отделяющие отапливаемые помещения от неотапливаемых, сообщающиеся с наружным воздухом | 0,7 |
Ограждения, отделяющие отапливаемые помещения от неотапливаемых, не сообщающиеся с наружным воздухом | 0,4 |
Перекрытия над подпольями, расположенными ниже уровня земли | 0,4 |
Перекрытия над подпольями, расположенными выше уровня земли | 0,75 |
Перекрытия над неотапливаемыми подвалами, расположенными ниже уровня грунта или выступающие на высоту до 1 м | 0,6 |
Таблица « Значения R0 и 1/R0»:
Конструкция |
Толщина |
R0, ккал/(м2 х ч х °С) |
1/R0, ккал/ (м2 х ч х °С) |
|
в кирпичах |
в мм |
|||
Стены | ||||
Сплошная кладка из обыкновенного кирпича | 0,5 | 135 | 0,38 | 2,64 |
1 | 265 | 0,57 | 1,76 | |
1,5 | 395 | 0,76 | 1,32 | |
2 | 525 | 0,94 | 1,06 | |
2,5 | 655 | 1,13 | 0,89 | |
Сплошная кладка из обыкновенного кирпича с воздушной прослойкой ( = 50 мм) в перевязку через каждые 6 рядов | 1,5 | 435 | 0,9 | 1,11 |
2 | 565 | 1,09 | 0,92 | |
2,5 | 695 | 1,28 | 0,78 | |
Сплошная кладка из дырчатого кирпича | 1,5 | 395 | 0,89 | 1,12 |
2 | 525 | 1,2 | 0,89 | |
2,5 | 655 | 1,4 | 0,71 | |
Кирпичная кладка с термоизоляционной засыпкой | 1,5 | 395 | 1,03 | 0,97 |
2 | 525 | 1,49 | 0,67 | |
Деревянные рубленые | — | 200 | 1,33 | 0,75 |
— | 220 | 1,45 | 0,68 | |
— | 240 | 1,56 | 0,64 | |
Брусчатые | — | 150 | 1,18 | 0,85 |
— | 180 | 1,28 | 0,78 | |
— | 200 | 1,32 | 0,76 | |
Чердачные перекрытия | ||||
Железо-бетонные из сборных ребристых плит с утеплителем | — | 100 | 0,69 | 1,45 |
— | 150 | 0,89 | 1,12 | |
— | 200 | 1,09 | 0,92 | |
— | 250 | 1,29 | 0,77 |
Перед тем как рассчитать теплопотери дома , помните, что добавочные потери тепла зависят от расположения здания на местности, от ориентации стен по сторонам света, скорости ветра и инфильтрации. Если конструктивные элементы дома обращены на север, восток, северо-восток и северо-запад, дополнительные потери составят 10 %, а если на запад или на юго-восток — 5 %. Расход тепла для нагрева воздуха в помещении можно найти по формуле: Q = F(пл.) х (tв — tн).
В ней используются величины:
- F — площадь пола помещения (в м2);
- tв- tн — внутренняя и наружная температура.
Помимо вышеизложенных вычислений, следует уменьшить теплопотери на величину бытовых тепловыделений. Бытовые тепловыделения определяются из расчета 21 Вт на 1 м2 площади пола.
В итоге для определения теплопроизводительности системы отопления следует: вычислить основные и дополнительные теплопотери, суммировать их и вычесть величину, которая характеризует бытовые тепловыделения.
3 Некоторые сведения о том, как рассчитать толщину утеплителя
Для того чтобы приступить к расчету термоизоляции, нам необходимо, прежде всего, высчитать R
o , затем узнать требуемое термическое сопротивление R
req по следующей таблице (сокращенный вариант).
Требуемые значения сопротивления теплопередаче ограждающих конструкций
Здание |
Градусо-сутки отопительного периода D |
Приведенное сопротивление теплопередаче ограждений R |
|||
стены |
покрытия |
чердачного перекрытия и перекрытия над холодными подвалами |
окна и балконной двери, витрины и витража |
||
1. Жилое, лечебно-профилактическое и детское учреждение, школа, интернат | |||||
а |
|||||
b |
|||||
2. Общественное, административное, бытовое и другие помещения с влажным или мокрым режимами | |||||
а |
|||||
b |
Коэффициенты a
и b
необходимы для тех случаев, когда значение D
d , °С·сут отличается от приведенного в таблице, тогда R
req , м 2 ·°С/Вт рассчитывается по формуле R req = a D
d + b
. Для колонки 6 первой группы зданий существуют поправки: если значение градусо-суток менее 6000 °С·сут, a
= 0,000075, а b
= 0,15, если тот же показатель в диапазоне 6000-8000 °С·сут, то a
= 0,00005, b
= 0,3, если же более 8000 °С·сут, то a
= 0,000025, а b
= 0,5. Когда все данные будут собраны, приступаем к расчету термоизоляции.
Как уменьшить теплопотери дома: теплоизоляция стен и окон
Понимание причин потери тепла вызывает естественный вопрос: как устранить теплопотери дома хотя бы значительно снизить? Ответ очевиден — кардинально улучшить теплоизоляцию стен, крыши, перекрытий, окон, что позволит повысить температуру в доме без увеличения затрат на отопление.
При качественной теплоизоляции дома даже при понижении температуры воздуха до -25 °С и выключенном отоплении температура внутри дома за сутки упадет всего лишь на 1 °С. Понятно, что и расходы на отопление в таком доме не столь обременительны.
Если вы не знаете, как уменьшить теплопотери дома, начните с осмотра окон: проверьте механизмы открывания и закрывания, при необходимости отрегулируйте их. Если будут обнаружены зазоры между оконными блоками и стенами, их тоже нужно герметично заделать. На стекла можно нанести отражающее покрытие. Поможет снизить теплопотери и остекление балкона и лоджии.
Ещё один способ, как снизить теплопотери дома — утепление дверей, причем желательно установить вторую дверь, которая дополнительно будет играть роль звукоизолятора.
Уменьшение теплопотерь дома: теплоизоляционные материалы
Решая проблему, как сохранить тепло в доме, очень важно правильно выбрать теплоизоляционные материалы. Термосопротивление самых современных из них намного превосходит этот параметр традиционных утеплителей
Теплоизоляционные материалы должны отвечать целому ряду требований, среди которых:
долговечность (это важно для длительной его эксплуатации);
экологичность (отсутствие вредных для здоровья выделений);
горючесть (отсюда и пожаробезопасность);
повышенная паропроницаемость (благодаря чему из помещения будет выводиться влага и конструкции дома будут оставаться сухими);
небольшой вес (не придется усиливать фундамент, перекрытия, не возникнет проблем с монтажом, транспортировка материала и покупка крепежа обойдутся не слишком дорого
естественно, цена (для многих это главный показатель, определяющий выбор того или иного утеплителя).
2.8 Расчет термического сопротивления внутренних стен
Для внутренних стен нормируемое
сопротивление теплопередаче определяется при разности температур между двумя
помещениями 6°С и более. При разности от 3°С до 6°С
рассчитывается термическое сопротивление. Если разность температур меньше или
равна 3°С, то расчет не требуется.
В данном случае расчет следует проводить
для стен между ИТП и неотапливаемой частью подвала, между вентиляционной
камерой и неотапливаемой частью подвала, и между лестничной клеткой и
неотапливаемой частью подвала, так разность температур между ними состовляет
14°С. Учитывая, что стены в этих случаях имеют одинаковую конструкцию, проведем
один расчет.
2.8.1 Исходные данные
tв
= 15˚C
tн
= 2˚C
r = 0,95
Табл.
2.8.1 Расчетные показатели материалов внутренней стены
Номер |
Материал |
Толщина |
Плотность |
Теплопроводность |
Источник |
1 |
Раствор |
20 |
1800 |
0,76 |
Поз. |
2 |
Бетон |
400 |
2400 |
1,74 |
Поз. |
3 |
Раствор |
20 |
1800 |
0,76 |
Поз. |
Способ точный — теплопотери ограждающих конструкций
Соотношение потери и поступления
Более точные данные получаем другим методом. Сначала определяется площадь всех стен в доме. Из нее вычитается общая площадь оконных и дверных проемов. Отдельно определяем площадь кровли и пола. Все эти данные подставляем в формулу dQ=SxdT/R, где:
S — площадь
dT — дельта температур, или разница между температурой дома и на улице
R — сопротивление теплопередаче
Q, естественно, сами рассчитываем теплопотери и делаем расчеты для каждой ограждающей конструкции. Полученные результаты суммируем — получаем общие теплопотери. К полученной цифре добавляем потери на вентиляцию.
Такого расчета вполне достаточно, чтобы определить оптимальную мощность котла. С другой стороны, полученные этим способом данные не расскажут о том, сколько радиаторов потребуется для обеспечения тепла в каждой комнате.
Величины измерения теплопотери
Ограждающие конструкции выполняют барьерную функцию для тепла и не позволяют ему свободно выходить наружу. Такой эффект объясняется теплоизоляционными свойствами изделий. Величина, использующаяся для измерения теплоизоляционных свойств, зовется теплопередающим сопротивлением. Такой показатель отвечает за отражение перепада значения температур при прохождении n-ого количества тепла через участок оградительных конструкций площадью 1 м 2. Итак, разберемся с тем, как рассчитать теплопотери дома.
К основным величинам, необходимым для вычисления теплопотери дома, относятся:
- q – величина, обозначающая количество тепла, уходящего из помещения наружу через 1 м 2 барьерной конструкции. Измеряется в Вт/м 2 .
- ∆T – разница между температурой в доме и на улице. Измеряется в градусах (о С).
- R – сопротивление теплопередаче. Измеряется в °С/Вт/м² или °С·м²/Вт.
- S – площадь здания или поверхности (используется по необходимости).
Основные теплопотери
Для начала совет: утепляя дом не стоит строго придерживаться норм, прописанных в СНиП 23–02–2003 «Тепловая защита зданий»! Они намного мягче европейских стандартов утепления и рассчитаны на дешёвые энергоносители. Ужесточайте российский норматив, утепляйте дом качественно, современными материалами.
Но даже в этом случае теплопотери возможны. Чтобы убедиться в этом достаточно взять напрокат тепловизор и провести обследование.
Теперь давайте разбираться с возможными причинами потери тепла:
Металлическая дверь. Обширный мостик, целый мост холода, который не позволит эффективно обогревать не только прихожую, но и весь дом. Слишком тонкая и неутеплённая входная дверь из металла может стать проблемой. Что делать в таком случае мы уже рассказывали. Эффективнее всего с потерями тепла через входную дверь помогут справиться тамбур или установка второй двери;
Второй причиной потерь тепла становятся окна. У двухкамерного современного стеклопакета сопротивление передаче тепла всего 0,57 (м²×°C)/Вт. Это в два раза меньше, чем у качественно утеплённой пенополистиролом стены. Бороться с этим можно путём установки стёкол с подогревом, использования термоплёнки, монтажа скандинавского окна, где стеклопакет дополняет одинарное остекление в отдельной раме. Даже тёплые, плотные шторы помогут сократить теплопотери через окна;
Также причиной того, что тепло покидает дом, могут стать дефекты, допущенные во время монтажа окон и дверей. Например, монтажная пена, которой были задуты стыки двери или окна со стеной, долгое время оставалась ничем не прикрытой. Она начинает буквально рассыпаться под солнечными лучами, появляются щели. Или изначально пену залили некачественно, остались пропуски. Если такие теплопотери были выявлены, придётся заниматься решением проблем, переделывать работу. Сразу заказывайте тёплый монтаж окон и двери с использованием трёхслойного монтажного шва;
Четвёртой причиной теплопотерь могут стать мостики холода, которые возникают на нижних венцах сруба и обвязке, на стыке цоколя, наружных стен и перекрытий первого этажа
Это проблемные места, утеплению которых нужно уделять особое внимание. Справиться с потерями тепла помогут герметизация щелей, утепление цоколя пенополистиролом, конопатка брёвен сруба;
Пятая причина касается каркасных домов
У них теплопотери могут возникнуть в результате того, что утеплитель под сайдингом просто сполз, так как был неправильно, ненадёжно закреплён. Кроме того, между стенами могли появиться грызуны, которые свили гнездо в минеральной вате или прогрызли пенополистирол. Выход один — перебирать обшивку и менять утеплитель. Чтобы не разбирать всю стену, вновь советуем воспользоваться тепловизором для определения проблемного места;
Шестой причиной теплопотерь часто становятся проблемы с утеплением кровли. Именно здесь сложнее всего не пропустить ни одного участка, много труднодоступных уголков. Нужно поработать под коньком, везде, чтобы утеплитель был уложен тщательно, без пропусков. Как вы помните, тёплый воздух поднимается вверх, поэтому через подкровельное пространство вы можете потерять больше всего тепла. Что делать? Искать проблемные места, при необходимости менять утеплитель, который подмок, задувать и заделывать щели, избавляясь от мостиков холода.
Это основные причины, по которым ваш дом может терять тепло. Бороться с ними можно и нужно, чтобы не греть улицу, а обеспечивать комфорт всем домочадцам с минимальными затратами на отопление.опубликовано econet.ru
Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.
2 Делаем теплотехнический расчет стены с учетом всех слоев
Как уже было сказано, каждому материалу свойственно сопротивление теплопередаче, и чем толще стены или перекрытия, тем выше это значение
. Однако не стоит забывать и про термоизоляцию, при наличии которой ограждающие помещение поверхности становятся многослойными и намного лучше препятствуют утечке тепла. У каждого слоя свое сопротивление прохождению тепла, и сумма всех этих величин обозначается в формулах как Σ
R
i (здесь буква i определяет номер слоя).
Поскольку составляющие ограждения помещений материалы с разными свойствами имеют некоторое возмущение температурного режима в своей структуре, высчитывается общее сопротивление теплопередаче. Формула у него следующая: , где R
в и R
н соответствуют сопротивлению на внутренней и наружной поверхностях ограждения, будь то стена или перекрытие
. Однако утеплители вносят в теплотехнический расчет стены коррективы, которые базируются на коэффициенте теплотехнической однородности r
, определяемом формулой .
Показатели с цифровыми индексами являются, соответственно, коэффициентами внутренних крепежей и соединения расчетного ограждения с любым другим. Первый, то есть r
1 , отвечает как раз за фиксацию утеплителей. Если коэффициент теплопроводности последних λ = 0,08 Вт/(м·°С), значение r
1 будет большим, если же теплопроводность термоизоляции оценивается как λ = 0,03 Вт/(м·°С), то меньшим.
В целом, картина складывается следующая. Допустим, термоизоляция монтируется прямым анкерным креплением на трехслойной ячеистобетонной стене, снаружи облицованной кирпичом. Тогда при слое утеплителя в 100 миллиметров r
1 соответствует 0,78-0,91, толщина в 150 миллиметров дает коэффициент внутреннего крепежа 0,77-0,90, тот же показатель, но в 200 мм, определяет r
1 как 0,75-0,88. Если внутренний слой также из кирпича, то r
1 = 0,78-0,92, а если стены помещения железобетонные, то коэффициент смещается до 0,79-0,93. А вот оконные откосы
и вентиляция дают значение r
2 = 0,90-0,95. Все эти данные следует учитывать в дальнейшем.
Калькулятор теплопотерь здания
На улице средняя температура за день | Выберите значение -40°C -30°C -20°C -15°C -10°C -5°C 0°C +5C +10C |
Внутри средняя температура за день | |
Стены Только выходящиена улицу стены! |
Добавьте выходящие на улицу стены и укажите, из каких слоёв состоит стена |
Комнаты |
Добавьте все используемые помещения, даже коридоры, и укажите, из каких слоёв состоят перекрытия |
Тепловые потери:Через стены: – кВт |
Однако из чего же складывается микроклимат в жилой комнате? Комфортные условия для жильцов зависят от температуры воздуха t
в, его влажности φ
в и движения v
в, возникающего при наличии вентиляции. И еще один фактор влияет на уровень тепла – радиационное излучение тепла или холода t
р, свойственное нагреваемым (охлаждаемым) естественным путем предметам и поверхностям в обстановке. По нему определяется результирующая температура t
п, с помощью формулы [t
п = (t
р + t
в)/2]. Все эти показатели для разных помещений можно рассмотреть в приведенной ниже таблице.
Оптимальные параметры микроклимата жилых зданий по ГОСТ 30494-96
Период года | Помещение |
Температура внутреннего воздуха t |
Результирующая температура t |
Относит. влажность внутреннего воздуха φ |
Скорость движения воздуха v |
Холодный | Жилая комната | ||||
То же, в районах с t 5 от -31 °С |
|||||
Кухня | |||||
Туалет | |||||
Ванная, совмещенный санузел | |||||
Помещение для отдыха и учебных занятий | |||||
Межквартирный коридор | |||||
Вестибюль, лестничная клетка | |||||
Кладовая | |||||
Теплый | Жилая комната |
Буквами НН обозначаются ненормируемые параметры.
Необходимые нормативные документы
Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:
- СНиП 23-02-2003 (СП 50.13330.2012). “Тепловая защита зданий”. Актуализированная редакция от 2012 года .
- СНиП 23-01-99* (СП 131.13330.2012). “Строительная климатология”. Актуализированная редакция от 2012 года .
- СП 23-101-2004. “Проектирование тепловой защиты зданий” .
- ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). “Здания жилые и общественные. Параметры микроклимата в помещениях” .
- Пособие. Е.Г. Малявина “Теплопотери здания. Справочное пособие” .
Скачать СНиПы и СП вы можете здесь, ГОСТ – здесь, а Пособие – здесь.
Порядок выполнения вычислений
Чтобы учесть все тепло, уходящее из дома, необходимо сделать расчет теплопотерь помещения, причем каждого по отдельности. Для этого производятся замеры всех ограждений, соседствующих с окружающей средой: стен, окон, крыши, пола и дверей.
Окна и двери измеряются по проему, который они заполняют.
По результатам замеров рассчитывается площадь каждой конструкции и подставляется в первую формулу (S, м²). Туда же вставляется значение R, полученное делением толщины ограждения на коэффициент теплопроводности строительного материала. В случае с новыми окнами из металлопластика величину R вам подскажет представитель фирмы-установщика.
В качестве примера стоит провести расчет теплопотерь через ограждающие стены из кирпича толщиной 25 см, площадью 5 м² при температуре окружающей среды -25°С. Предполагается, что внутри температура составит +20°С, а плоскость конструкции обращена к северу (β = 0,1). Сначала нужно взять из справочной литературы коэффициент теплопроводности кирпича (λ), он равен 0,44 Вт/(м°С). Затем по второй формуле вычисляется сопротивление передаче тепла кирпичной стены 0,25 м:
R = 0,25 / 0.44 = 0,57 м²°С / Вт
Чтобы определить теплопотери помещения с этой стенкой, все исходные данные надо подставить в первую формулу:
Q = 1 / 0,57 х (20 — (-25)) х 5 х (1 + 0,1) = 434 Вт = 4.3 кВт
Если в комнате имеется окно, то после вычисления его площади следует таким же образом определить теплопотери сквозь светопрозрачный проем. Такие же действия повторяются относительно полов, кровли и входной двери. В конце все результаты суммируются, после чего можно переходить к следующему помещению.
Способ оптимальный — покомнатный расчет
При выполнении покомнатного расчета обязательно должна учитываться вентиляция. В соответствии со СНиП, в помещении должен обеспечиваться однократный воздухообмен за один час. На практике, такие показатели практически никогда не достигаются, но это не значит, что вентиляция не будет уносить тепло. Допустимо сокращение воздухообмена, но полностью обойтись без вентиляции нельзя.
Программное обеспечение
Расчет теплопотерь в этом случае будет выглядеть следующим образом. Для комнаты считаются потери тепла по вышеприведенной формуле. Далее определяется объем воздуха, необходимого для того, чтобы в комнате (с учетом ее обитаемости и посещаемости) могли спокойно находиться люди. Вычисляется мощность, необходимая для нагревания этого объема воздуха до комфортной температуры. Все полученные результаты — теплопотери стен, пола, потолка, окон, дверей, затраты на вентиляцию — суммируются, и получается реальная картина.
Аналогичные расчеты проводятся для каждого помещения, с учетом его предназначения, функционального использования, продолжительности нахождения в нем людей и других параметров. Например, кухня и ванная — это помещения с повышенной влажностью, а значит, здесь нужна хорошая вентиляция, что увеличит теплопотери.
Способ простой — «на глазок»
Как бы парадоксально это ни звучало, но простейшие расчеты можно сделать вообще без формул, методик и программ. Просто «на глаз». Для каждой местности существуют свои усредненные показатели. Например, в климатических условиях Центрального региона для отопления 10 кв. метров площади, при высоте потолков менее 3 метров, потребуется 1 кВт мощности. Такая «усредненная комната» имеет одну наружную стену и одно окно. В реальной комнате количество окон больше? Значит, мощностные показатели немного увеличиваются.
Такой расчет — самый грубый. Он позволяет прикинуть мощность котла и количество радиаторов. Решив считать таким способом, нужно помнить, что усредненные показатели могут не подходить для конкретного дома. Здание плохо утеплено? Мощности котла, рассчитанной таким методом, будет недостаточно. Владелец не экономил на теплоизоляции? Котел с усредненной мощности тоже не подойдет. В лучшем случае дома будет невыносимо жарко. Как видим, такой подсчет простой, но неперспективный.
Пример 1.
Угловая комната (1 этаж)
Характеристики комнаты:
- 1 этаж.
- площадь комнаты – 16 м2 (5х3.2).
- высота потолка – 2.75 м.
- наружных стен – две.
- материал и толщина наружных стен – брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
- окна – два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
- полы – деревянные утепленные. снизу подвал.
- выше чердачное перекрытие.
- расчетная наружная температура –30 °С.
- требуемая температура в комнате +20 °С.
Далее выполняем расчет площади теплоотдающих поверхностей.
- Площадь наружных стен за вычетом окон: Sстен(5+3.2)х2.7-2х1.0х1.6 = 18.94 м2.
- Площадь окон: Sокон = 2х1.0х1.6 = 3.2 м2
- Площадь пола: Sпола = 5х3.2 = 16 м2
- Площадь потолка: Sпотолка = 5х3.2 = 16 м2
Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.
Теперь Выполним расчет теплопотери каждой из поверхностей:
- Qстен = 18.94х89 = 1686 Вт.
- Qокон = 3.2х135 = 432 Вт.
- Qпола = 16х26 = 416 Вт.
- Qпотолка = 16х35 = 560 Вт.
Суммарные теплопотери комнаты будут составлять: Qсуммарные = 3094 Вт.
Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.
Теплоизолирующие свойства ограждающих конструкций
По теплоизолирующим свойствам ограждающих конструкций выделяются две категории зданий по энергоэффективности:
- Класс С. Отличается нормальными показателями. К этому классу относятся дома старой постройки и значительная часть новостроек в малоэтажном строительстве. Типовой кирпичный или бревенчатый дом будет иметь класс С.
- Класс А. Эти дома имеют очень высокий показатель энергоэффективности. В их строительстве используются современные теплоизолирующие материалы. Все строительные конструкции выполнены таким образом, чтобы минимизировать потери тепла.
Зная, к какой категории относится дом, приняв во внимание климатические условия, можно начинать расчеты. Использовать для этого специальные программы или обойтись «дедовскими» методами и считать с помощью ручки и бумаги, решать владельцу дома
Коэффициент теплопередачи для ограждающих конструкций можно рассчитать табличными методами.
Снижение теплопотерь дома: возведение монсарды
Возведение мансарды — еще один способ снижения теплопотерь дома и сокращения потери тепла через крышу, поскольку ее часть используется в качестве стен мансардного помещения. О том, что для кровли следует выбрать качественный материал, наверное, можно не говорить.
Уменьшение теплопотерь дома до нуля вряд ли удастся, но реально предпринять меры, благодаря которым можно перестать обогревать улицу. Первое, что приходит на ум,— это необходимость утепления дома. При этом заметим, что стоимость теплоизоляции по сравнению с тем, во сколько обойдется строительство дома, просто мизерна. Экономия на теплоизоляции непременно обернется еще большими потерями в будущем, тем более что цены на энергоносители постоянно растут. Подойдя к утеплению дома в комплексе, можно сократить расходы на отопление примерно на 40%. Это означает, что теплоизоляция выгодна вдвойне, поскольку снижает теплопотери и минимизирует затраты на энергоресурсы.
Некачественная теплоизоляция стен
Изоляция работает не так эффективно, как могла бы. На термограмме видно, что температура на поверхности стены распределена неравномерно. То есть, одни участки стены нагреваются сильнее других (чем ярче цвет, тем выше температура). А это значит что и потери тепла в ни сильнее, что неправильно для утепленной стены.
В данном случае яркие области это пример неэффективной работы изоляции. Вероятно что пенопласт в этих места поврежден, некачественно смонтирован или отсутствует вовсе
Поэтому после утепления здания важно убедиться, что работы выполнены качественно и изоляция работает эффективно
Список источников
- svoydomtoday.ru
- term.od.ua
- pikucha.ru
- www.stroy-dom.net
- www.calc.ru
- stroyew.ru
- vunivere.ru
- studbooks.net
- gidotopleniya.ru
- econet.ru