2d3e733dd134a5a070f814bd58a3a99a.jpg

Схема эпра для люминесцентных ламп

СОДЕРЖАНИЕ
0
806 просмотров
15 февраля 2020

Электромагнитный дроссель

Балласт ограничивает протекающий ток. Часть мощности нагревает устройство, что приводит к потерям энергии. По уровням потерь балласт для ламп может быть следующим:

При включении балласта в сеть переменное напряжение опережает ток по фазе. В его обозначении всегда указывается косинус угла этого отставания, называемый коэффициентом мощности. Чем меньше его величина, тем больше потребляется реактивная энергия, являющаяся дополнительной нагрузкой. Чтобы увеличить коэффициент мощности до величины 0.85, параллельно сети подключается конденсатор с емкостью 3-5 мкф.

Любой электромагнитный дроссель создает шум. В зависимости от того, насколько его можно уменьшить, выпускают балласты с нормальным (Н), пониженным (П), очень низким (С, А) уровнями шума.

Мощности ламп и балластов должны подбираться в соответствии друг с другом (от 4 до 80 Вт), иначе светильник преждевременно выйдет из строя. Они поставляются в комплекте, но можно подобрать своими руками.

Классическое устройство запуска из электромагнитного балласта и пускателя (ЭмПРА) имеет следующие достоинства:

  • относительная простота;
  • высокая надежность;
  • небольшая цена;
  • не требуется ремонт, поскольку даже своими руками он обойдется дороже нежели, чем купить новый блок.

Кроме того, ему присуща целая масса недостатков:

  • длительный запуск;
  • потери энергии (до 15 %);
  • шум при работе дросселя;
  • большие габариты и вес;
  • неудовлетворительный запуск при низкой температуре среды;
  • моргание лампы.

Недостатки дросселей привели к необходимости создать новое устройство. Электронный балласт – это инновационное решение, повышающее качество работы ЛЛ и делающее ее долговечной. Схема ЭПРА (электронное пускорегулирующее устройство) – это единый электронный блок, формирующий последовательность изменения напряжения для зажигания.

Блок-схема запуска ламп с помощью ЭПРА

Преимущества электронных схем следующие:

  • запуск может быть моментальным и с задержкой;
  • нет необходимости в стартере для запуска;
  • за счет высокой частоты отсутствует «моргание», а светоотдача выше;
  • конструкция легче и компактней;
  • долговечность за счет оптимальных режимов пуска и работы.

Внешне ЭПРА выглядит, как показано на рисунке ниже.

ЭПРА для люминесцентных ламп

Недостатком ЭПРА является высокая цена из-за сложности схемы.

Включение приборов со сгоревшими спиралями

Если в вашей кладовке покрываются пылью сгоревшие люминесцентные лампы, которые вы никак не соберетесь утилизировать, не торопитесь их выбрасывать. Такие устройства смогут послужить еще, если вы умеете держать в руках паяльник. Для реализации этой идеи понадобятся два абсолютно недефицитных диода и два конденсатора:

Схема включения ЛДС со сгоревшими спиралями

Как работает такая схема? Мост, собранный на диодах VD1, VD2, С1, С2 представляет собой простейший умножитель, увеличивающий напряжение вдвое. Для того чтобы при 400 – 450 В начался тлеющий разряд, совсем необязательно разогревать электроды. Как только светильник запустится, балласт L1 ограничит ток через лампу до рабочего уровня.

Если вы решили повторить эту схему, то обратите внимание на то, что конденсаторы должны быть бумажными неполярными, а диоды рассчитаны на обратное напряжение не ниже 300 В. В качестве балласта используется обычный дроссель, мощность которого равна мощности светильника

В случае если с дросселем совсем туго, но освещение нужно организовать любой ценой, можно в качестве балласта применить обычную лампочку накаливания, мощность которой равна мощности ЛДС. Но такая замена сильно снизит КПД всего устройства, а потому не всегда оправдана.

Следующий вариант светильника пригодится на тот случай, если в вашем распоряжении оказалось две однотипные ЛДС, у которых сгорело по одной спирали (обычно так и бывает). Для его реализации вам понадобятся дроссель, имеющий мощность вдвое большую, чем номинал каждой лампочки, и стандартный стартер на 220 В:

Включение двух ЛДС со сгоревшими спиралями

Здесь стартер подогревает по одной спирали в каждой лампе, которые включены последовательно. Этого вполне достаточно для пуска большинства газоразрядных приборов. Есть и еще одно применение такой схемы. Она удобна в том случае, если у вас нет двух дросселей на нужную мощность, зато есть один на удвоенную. Вполне очевидно, что в этой схеме будут работать и ЛДС с исправными спиралями.

Подключение

Электронное балластное устройство внешним видом похоже на небольшой блок с клеммами снаружи и печатной платой внутри, от типа которой зависит количество подключаемых источников света.

Принцип самостоятельного подключения одного источника света достаточно прост и не требует особых познаний:

  • подключение первого и второго коннектора на выходе балластного устройства к паре контактов на осветительном приборе;
  • подключение третьего и четвертого коннектора на выходе балластного устройства к другой паре контактов на осветительном приборе;
  • подача электропитания на входе.

Соединение лампы с балластным устройством

Самостоятельное подключение пары источников света осуществляется в соответствии со следующими рекомендациями:

  • подсоединение дросселя на разрыв в питающей нити цепи;
  • параллельное ведение стартера к электродам.

Соединение электронного балластного устройства, стартерных коннекторов и нитей накала обязательно должно быть последовательным.

Как показывает практика, очень удобным является замена традиционного стартера обычной кнопкой стандартного электрического звонка. При этом нажим на кнопку вызывает подачу напряжения к осветительному прибору.

Информация о номерах

г. Санкт-Петербург
(10237 номеров)

Начало диапазона Конец диапазона Оператор
+7 (812)
679-00-98
+7 (812)
679-00-98
АО “Северен-Телеком”
(1 номер)
+7 (812)
679-84-35
+7 (812)
679-84-35
АО “Северен-Телеком”
(1 номер)
+7 (812)
678-97-63
+7 (812)
679-00-97
ПАО “Ростелеком”
(335 номеров)
+7 (812)
679-00-99
+7 (812)
679-84-34
ПАО “Ростелеком”
(8336 номеров)
+7 (812)
679-84-36
+7 (812)
679-99-99
ПАО “Ростелеком”
(1564 номера)

АО “Северен-Телеком”
(2 номера)

Начало диапазона Конец диапазона Регион
+7 (812)
679-00-98
+7 (812)
679-00-98
г. Санкт-Петербург
(1 номер)
+7 (812)
679-84-35
+7 (812)
679-84-35
г. Санкт-Петербург
(1 номер)

ПАО “Ростелеком”
(10235 номеров)

Начало диапазона Конец диапазона Регион
+7 (812)
678-97-63
+7 (812)
679-00-97
г. Санкт-Петербург
(335 номеров)
+7 (812)
679-00-99
+7 (812)
679-84-34
г. Санкт-Петербург
(8336 номеров)
+7 (812)
679-84-36
+7 (812)
679-99-99
г. Санкт-Петербург
(1564 номера)

Общая емкость –
10237 номеров

Начало диапазона Конец диапазона Оператор и
Регион
+7 (812)
679-00-98
+7 (812)
679-00-98
АО “Северен-Телеком”
г. Санкт-Петербург
+7 (812)
679-84-35
+7 (812)
679-84-35
АО “Северен-Телеком”
г. Санкт-Петербург
+7 (812)
678-97-63
+7 (812)
679-00-97
ПАО “Ростелеком”
г. Санкт-Петербург
+7 (812)
679-00-99
+7 (812)
679-84-34
ПАО “Ростелеком”
г. Санкт-Петербург
+7 (812)
679-84-36
+7 (812)
679-99-99
ПАО “Ростелеком”
г. Санкт-Петербург

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Запуск ламп

Электроды лампы разогреваются, после чего на них подается высокое напряжение через пускорегулирующее устройство. Его частота составляет 20-60 кГц, что дает возможность исключить мерцание и повысить кпд. В зависимости от схемы запуск может быть мгновенным или плавным – с нарастанием яркости до рабочей.

При холодном пуске период эксплуатации люминесцентных ламп значительно снижается.

К процессу разогрева электродов добавляется колебательный контур в цепи питания лампы, входящий в электрический резонанс перед разрядом. При этом значительно повышается напряжение, более интенсивно подогреваются катоды и в результате зажигание происходит легко. Как только начинается разряд в лампе, колебательный контур сразу выходит из резонанса и устанавливается рабочее напряжение.

У дешевых ЭПРА или собранных своими руками принцип действия аналогичен варианту с дросселем: зажигание ламп производится большим напряжением, а удерживание разряда – малым.

Схема электронного балласта

Как и на всех схемах ЭПРА, выпрямление напряжения производится диодами VD4-VD7, которое затем фильтруется конденсатором C1. Емкость фильтра выбирается из расчета 1 мкФ на 1 Вт мощности ламп. При меньших номиналах конденсатора свечение будет более тусклым.

Как только происходит подключение к сети, сразу начинает заряжаться конденсатор С4. При достижении 30 В пробивается динистор CD1 и импульсом напряжения открывается транзистор T2, затем начинает работать полумостовой автогенератор из транзисторов T1, T2 и трансформатора TR1 c двумя противофазно включенными первичными и одной вторичной обмотками. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45-50 кГц). Когда напряжение на конденсаторе С3 поднимется до величины пуска, лампа зажигается. При этом снижаются частота генератора и напряжения, а дроссель ограничивает ток. Из-за высокой частоты его габариты небольшие.

Почему перегорают люминесцентные лампы?

Сама лампа представляет собой стеклянную колбу различной геометрической формы, изготовленную из хрупкого кварцевого стекла. Ее внутренние стенки покрыты люминофором – материалом, способным преобразовывать спектр излучения ультрафиолетовых длин волн в видимую часть излучения – дневную. Кварц со временем теряет свою прозрачность.

Внешние механические воздействия на колбу могут привести к появлению в ее структуре микротрещин, следствием которых может быть попадание в герметичную полость воздуха. Это приводит к перегоранию ЛДС. Для свечения необходим тлеющий разряд внутри корпуса, который обеспечивают катоды устройства, представляющие собой вольфрамовые нити накаливания в виде разогреваемых электрическим током спиралей.

Они покрыты слоем щелочного металла для продления срока службы лампы, который при частом ее включении-выключении осыпается. Это, в свою очередь, приводит к перегреву катода и выходу его из строя. Со временем уменьшается эмиссия электрода или его способность испускать электроны со своей поверхности. Их количество уже не способно поддержать тлеющий разряд.

Варианты подключения люминесцентных ламп

В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные.

Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп.

Простейший вариант питания светильника через электромагнитный пускорегулирующий элемент: 1 – нить накала; 2 – стартер; 3 – стеклянная колба; 4 – дроссель; L – фазная линия питания; N – нулевая линия

Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь дроссель и стартер.

Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы.

Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму.

Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно.

Вариант подключения двух люминесцентных светильников через один дроссель: 1 – фильтрующий конденсатор; 2 – дроссель, по мощности равный мощности двух приборов света; 3, 4 – лампы; 5,6 – стартеры запуска; L – фазная линия питания; N – нулевая линия

На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников.

Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА.

Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя.

Разновидности пускорегулирующих устройств

В настоящее время в лампах дневного света используются электромагнитные пускорегулирую-щие устройства – ЭмПРА и более современные – электронные (ЭПРА). Каждый из них выполняет одну и ту же функцию и отличаются лишь конструкцией. Поэтому действие приборов происходит по-разному.

Схема ЭмПРА состоит из дросселя, поддерживающего лампу в рабочем режиме, стартера, производящего пуск и конденсатора, снижающего реактивные потери. Основные детали и дополнительные компоненты соединяются в общий блок, представляющий собой довольно громоздкую конструкцию, оказывающую заметное влияние на массу светильника в целом.

Электромагнитное пускорегулирующее устройство подключается очень просто. Каждая люминесцентная лампа оборудована с торцов четырьмя электродами. Первая пара имеет контакты 1 и 2, а вторая пара – 3 и 4. Подключение стартера выполняется к контактам 1 и 3, обмотка дросселя соединяется с контактом 2, к 4-му контакту подключается один из проводов питания. Другой провод соединяется со второй обмоткой дросселя.

В отличие от электромагнитной аппаратуры, электронная схема является достаточно сложным устройством, с множеством рабочих элементов. Принцип действия ЭПРА остался точно таким же, поскольку конструкция самих ламп не изменилась. Просто сам рабочий процесс выполняется совершенно по-другому. Благодаря легким и компактным деталям, заметно снизился общий вес и размеры прибора.

Подключение устройства осуществляется с помощью специальных контактных колодок, разделенных между собой. К первой группе колодок подключается внешнее питание, а ко второй – сама лампа. Все компоненты ЭПРА располагаются на специальной плате и включают в себя:

  • Выпрямитель. Выполняет преобразование постоянного тока в переменный.
  • Фильтр, ограничивающий электромагнитные помехи.
  • Сглаживающий фильтр, защищающий от скачков и перепадов напряжения.
  • Дроссель.
  • Корректор коэффициента мощности.
  • Инвертор, выполненный по полумостовой схеме.

Балласты для компактных ламп

Люминесцентные лампы компактного типа представляют собой приборы, аналогичные традиционным лампам накаливания с резьбовым цоколем E14 и E27.

Могут размещаться в современных и раритетных люстрах, бра, торшерах и прочих осветительных приборах.


Из-за конструкционных особенностей компактных люминесцентов к электронной «начинке» предъявляются повышенные требования. Бренды всегда учитывают их при производстве, а неизвестные изготовители, с целью удешевления, меняют многие элементы на более простые. Это существенно снижает эффективность и срок службы модуля

Комплектуются приборы такого класса, как правило, прогрессивным электронным балластом, который встраивается непосредственно во внутреннюю конструкцию и обычно располагается на плате лампового изделия.

Поиск неисправностей и ремонт

Если возникли проблемы с работой газоразрядных ламп, часто ремонт может быть проведен самостоятельно. Основной задачей в такой ситуации является определение источника проблемы – осветительный прибор либо балласт. Для проверки электронной схемы необходимо предварительно удалить линейную лампочку, замкнуть электроды и подключить обыкновенную лампу. Если она начала светиться, то проблема не в балласте.

Для поиска неисправности в люминесцентных осветительных устройствах сначала требуется поочередно прозвонить все элементы начиная с предохранителя. Если эта деталь оказалась рабочей, необходимо переходить к проверке конденсатора и диодов. Если все элементы пускорегулирующего аппарата оказались исправными, стоит проверить дроссель. Своевременный ремонт осветительного устройства позволит увеличить срок его эксплуатации.

Как устроена и работает ЛДС

Конструктивно прибор представляет собой герметичную колбу, заполненную инертным газом и парами ртути. Внутренняя поверхность колбы покрыта люминофором, а в торцы ее впаяны электроды. При подаче напряжения на электроды, между ними возникает тлеющий разряд, создающий невидимое ультрафиолетовое излучение. Это излучение воздействует на люминофор, заставляя его светиться.

Схема люминесцентной лампы

Все это ЛДС, работающие на одном принципе.

Для нормальной работы люминесцентного светильника необходимо выполнить два условия:

  1. Обеспечить начальный пробой межэлектродного промежутка (запуск).
  2. Стабилизировать ток через лампочку, чтобы тлеющий разряд не перешел в дуговой (работа).

Пуск лампы

В обычных условиях питающего напряжения недостаточно для электрического пробоя межэлектродного промежутка, поэтому пуск ЛДС возможет только с помощью дополнительных мер – разогрева электродов для начала термоэлектронной эмиссии или повышения напряжения питания до значений, достаточных для создания разряда.

До недавнего времени преимущественно использовался первый метод, для чего электроды делались (и делаются) в виде спиралей, наподобие тех, что стоят в обычных лампочках накаливания. В момент включения на спирали при помощи автоматических устройств (стартеров) подается напряжение, электроды разогреваются, обеспечивая зажигание светильника. После пуска системы стартер отключается и в процессе дальнейшей работы не участвует.

Стартеры для пуска ЛДС на различные напряжения

Позже начали появляться схемотехнические решения, не разогревающие электроды, а подающие на них повышенное напряжение. После пробоя межэлектродного промежутка напряжение автоматически снижается до номинального, и светильник переходит в рабочий режим. Для того чтобы ЛДС можно было использовать с любыми типами пусковых устройств, все они и по сей день выполняются с электродами в виде спиралей накаливания, имеющих по два вывода.

Поддержание рабочего режима

Если ЛДС напрямую включить в розетку, то начавшийся после поджига тлеющий разряд тут же перейдет в дуговой, поскольку ионизированный межэлектродный промежуток имеет очень малое сопротивление. Чтобы избежать этой ситуации, ток через прибор ограничивается специальными устройствами – балластами. Разделяются балласты на два типа:

  1. Электромагнитные (дроссельные).
  2. Электронные.

Работа электромагнитных пускорегулирующих аппаратов (ЭмПРА) основана на принципе электромагнитной индукции, а сами они представляют собой дроссели – катушки, намотанные на незамкнутом железном сердечнике. Такая конструкция обладает индуктивным сопротивлением переменному току, которое тем больше, чем выше индуктивность катушки. Дроссели различаются по мощности и рабочему напряжению, которые должны равняться мощности и напряжению используемой лампы.

Электромагнитные дроссели (балласты) для ЛДС мощностью 58 (вверху) и 18 Вт.

Электронные пускорегулирующие аппараты (ЭПРА) выполняют ту же функцию, что и электромагнитные, но ограничивают ток при помощи электронной схемы:

Электронное пускорегулирующее устройство для люминесцентной лампы

Неисправности и ремонт

Сгоревшие детали в схеме часто видно. Как проверить электронный балласт? Чаще всего из строя выходят транзисторы. Перегоревшую деталь можно обнаружить визуально. Когда производится ремонт своими руками, рекомендуется проверить парный с ним транзистор и расположенные рядом резисторы. По ним не всегда видно сгоревшие. Вздутый конденсатор обязательно меняется. Если сгоревших деталей несколько, ремонт балласта не делается.

Иногда после выключения ЭПРА лампа продолжает слабо мерцать. Одной из причин может быть наличие потенциала на входе при отключении нуля. Схему надо проверить и сделать подсоединения своими руками, чтобы выключатель был установлен на фазу. Возможно, что остается заряд на конденсаторе фильтра. Тогда к нему следует подключить параллельно сопротивление для разрядки на 200-300 кОм.

Из-за скачков напряжения в сети часто необходим ремонт светильников с электронным балластом. При неустойчивом электроснабжении лучше применять электромагнитный дроссель.

Компактная лампа (КЛЛ) содержит ЭПРА, встроенный в цоколь. Ремонт ЛЛ низкой цены и качества производится по следующим причинам: сгорание нити накала, пробой транзисторов или резонансного конденсатора. Если сгорела спираль, ремонт своими руками ненадолго продлит срок службы и лампу лучше заменить. Ремонт ЛЛ, у которых обгорел слой люминофора (почернение колбы в области электродов), также производить нецелесообразно. При этом исправный балласт можно использовать как запасной.

Обгорание люминофора на люминесцентной лампе

Ремонт электронного балласта долго не потребуется, если модернизировать КЛЛ, установив своими руками NTS-термистор (5-15 Ом) последовательно с резонансным конденсатором. Деталь ограничивает пусковой ток и надолго защищает нити накала. Целесообразно также сделать вентиляционные отверстия в цоколе.

Устройство вентиляции своими руками для отвода тепла от балласта

Аккуратно сверлятся отверстия рядом с трубкой для ее лучшего охлаждения, а также около металлической части цоколя, чтобы отвести тепло от деталей балласта. Подобный ремонт возможен только в сухих помещениях. Посередине можно сделать третий ряд отверстий сверлом большего диаметра.

Ремонт с установкой термистора производится с выпаиванием проводника на нижней площадке с припоем. Затем отгибается выпуклая часть цоколя от стеклянной колбы и освобождается второй провод. После цоколь снимается и обеспечивается доступ к печатной плате. После того как ремонт будет закончен, цоколь устанавливается в обратной последовательности.

Изготовить своими руками

Трубчатые ЛЛ длиной 1200 мм недорого стоят и могут освещать большие площади. Светильник можно изготовить своими руками, например, из 2 ламп по 36 Вт.

  1. Корпус – основание прямоугольной формы из негорючего материала. Можно использовать бывший в употреблении светильник, для которого ремонт уже не требуется.
  2. ЭПРА подбирается под мощность светильников.
  3. На каждую из ламп понадобится по 2 патрона G13, многожильный провод и крепеж.
  4. Патроны для ламп крепятся на корпусе после выбора расстояния между ними.
  5. ЭПРА устанавливается в зоне минимального нагрева от ламп (обычно ближе к центру) и подключается к патронам. Каждый блок выпускается со схемой подключений на корпусе.
  6. Светильник крепится на стене или потолке с подключением к сети питания на 220 В через выключатель.
  7. Для защиты ламп желательно применять прозрачный колпак.

Самодельный светильник

Схема подключения лампы с помощью электромагнитного балласта

Заменить стартер можно стандартной кнопкой дверного электрического звонка. При этом для розжига люминесцентной лампы понадобится удерживать кнопку в нажатом состоянии и отпускать только после того, как светильник начнёт излучать свет. Порядок функционирования схемы подключения источника света с помощью электромагнитного пускорегулирующего устройства происходит по следующему принципу:

  • после подключения к сети переменного тока дросселем накапливается электромагнитный заряд;
  • через контактную группу стартерного устройства происходит подача электрической энергии;
  • ток начинает поступать на нити разогрева электродов изготовленных из вольфрама;
  • происходит разогрев стартера и электродов;
  • контактная группа стартера размыкается;
  • происходит высвобождение аккумулированной в дросселе энергии;
  • на электродах изменяется напряжение;
  • люминесцентный светильник начинает светиться.

Чтобы увеличить КПД люминесцентного осветительного прибора и снизить помехи, которые могут возникать в момент загорания лампы, в схеме предусмотрены конденсаторы. Одна ёмкость монтируется непосредственно в стартере для гашения искрения и улучшения неоновых импульсов. При этом такая схема подключения обладает рядом неоспоримых преимуществ:

  • максимальная надёжность, доказанная временем;
  • простота сборки;
  • невысока цена.

Также хочется отметить и недостатки, которых достаточно много:

  • большие габариты и вес светильника;
  • длительный запуск лампы;
  • малая эффективность прибора при работе в условиях низких температур;
  • достаточно большой уровень потребления электричества;
  • характерный шум дросселей во время работы;
  • эффект мерцания, пагубно влияющий на человеческое зрение.

Схемы электронного

В зависимости от типа конкретной лампочки элементы ЭПРА могут иметь различную реализацию, как по электронной начинке, так и по встраиваемости. Ниже будут рассмотрены несколько вариантов для приборов с различной мощностью и конструкцией.

Схема ЭПРА для ламп дневного света с мощностью 36 Вт

В зависимости от применяемых электронных деталей по типу и техническим показателям у балластников электрическая схема может существенно отличаться, однако выполняемые ими функции будут такими же.

На приведенном выше рисунке в схеме используются такие элементы:

  • диоды VD4–VD7 предназначены для выпрямления тока;
  • конденсатор С1 предназначен для фильтрации тока, проходящего через систему диодов 4-7;
  • конденсатор С4 начинает зарядку после подачи напряжения;
  • динистор CD1 пробивается в момент достижения напряжением показателя 30 В;
  • транзистор T2 открывается после пробития 1 динистора;
  • трансформатор TR1 и транзисторы T1, T2 запускаются в результате активации на них автогенератора;
  • генератор, дроссель L1 и последовательные конденсаторы С2, С3 на частоте примерно 45–50 кГц начинают резонировать;
  • конденсатор С3 включает лампу после достижения на нем пусковой величины заряда.

Схема ЭПРА на базе диодного моста для ЛДС с мощностью 36 Вт

В приведенной схеме есть одна особенность – колебательный контур встраивается в конструкцию самого осветительного прибора, что обеспечивает резонанс прибора до момента появления в колбе разряда.

Таким образом, частью контура будет выступать нить накала лампы, что в момент появления разряда в газовой среде сопровождается изменением в колебательном контуре соответствующих параметров. Это выводит его с резонанса, что сопровождается снижением до рабочего уровня напряжения.

Схема ЭПРА для ЛДС с мощностью 18 Вт

Лампы, которые оснащены Е27 и Е14 цоколем сегодня получили наибольшее распространение среди потребителей. В этом приборе балласт встраивается прямо в конструкции устройства. Выше приведена соответствующая схема.

Схема ЭПРА на базе диодного моста для ЛДС с мощностью 18 Вт

Необходимо учитывать особенность строения автогенератора, в основу которого входит пара транзисторов.

Из повышающей обмотки, обозначенной на схеме 1-1 трансформатора Тр, поступает питание. Частями последовательного колебательного контура выступает дроссель L1 и конденсатор С2, резонансная частота которого от генерируемой автогенератором существенно отличается. Приведенная выше схема используется для настольных осветительных приборов бюджетного класса.

Схема ЭПРА в более дорогих устройствах для ЛДС с мощностью 21 Вт

Необходимо отметить, что более простые схемы балласта, которые применяются для осветительных приборов типа ЛДС, не смогут гарантировать длительную эксплуатацию лампы, поскольку подвергаются большим нагрузкам.

У дорогих изделий такой контур обеспечивает стабильное функционирование на протяжении всего эксплуатационного срока, поскольку все используемые элементы соответствуют более серьезным техническим требованиям.

Трансформатор из дросселя

Далее рассмотрим оба варианта. Для того чтобы воспользоваться дросселем из электронного балласта, его надо выпаять из платы и затем разобрать. Если в нем применен Ш-образный сердечник, он содержит две одинаковые части, которые соединены между собой. В рассматриваемом примере для этой цели применена оранжевая клейкая лента. Она аккуратно удаляется.

Удаление ленты, стягивающей половинки сердечника

Половинки сердечника обычно склеены так, чтобы между ними оставался зазор. Он служит для оптимизации намагничивания сердечника, замедляя этот процесс и ограничивая скорость нарастания тока. Берем наш импульсный паяльник и нагреваем сердечник. Прикладываем его к паяльнику местами соединения половинок.

Рассоединяем склеенные половины сердечника

Разобрав сердечник, получаем доступ к катушке с намотанным проводом. Обмотку, которая уже есть на катушке, отматывать не рекомендуется. От этого изменится режим намагничивания. Если свободное место между сердечником и катушкой позволяет обернуть один слой стеклоткани для улучшения изоляции обмоток друг от друга, надо сделать это. А потом намотать десять витков вторичной обмотки проводом подходящей толщины. Поскольку мощность нашего блока питания будет небольшой, толстый провод не нужен. Главное, чтобы он поместился на катушке, и половинки сердечника наделись на него.

Разобранный дроссель

Намотав вторичную обмотку, собираем сердечник и закрепляем половинки клейкой лентой. Предполагаем, что после тестирования БП станет понятно, какое напряжение создается одним витком. После тестирования разберем трансформатор и добавим необходимое число витков. Обычно переделка имеет целью сделать преобразователь напряжения с выходом 12 В. Это позволяет получить при использовании стабилизации зарядное устройство для аккумулятора. На такое же напряжение можно сделать и драйвер для светодиодов из энергосберегающей лампы, а также зарядить фонарик с питанием от аккумулятора.

Поскольку трансформатор нашего ИБП, скорее всего, придется доматывать, впаивать его в плату не стоит. Лучше припаять проводки, торчащие из платы, и к ним на время тестирования припаять выводы нашего трансформатора. Концы выводов вторичной обмотки надо очистить от изоляции и покрыть припоем. Затем либо на отдельной панельке, либо прямо на выводах намотанной обмотки надо собрать выпрямитель на высокочастотных диодах по схеме моста. Для фильтрации в процессе измерения напряжения достаточно конденсатора 1 мкФ 50 В.

Готовая к тестированию плата с выпрямителемСхема импульсного блока питания

Список источников

  • sovet-ingenera.com
  • OsvescheniePro.com
  • proprovoda.ru
  • elektro.guru
  • electricremont.ru
  • chebo.biz
  • 220v.guru
  • OperatorRegion.ru
  • jelectro.ru
  • electrobox.su
  • electric-220.ru
  • LampaGid.ru

Похожие статьи

Комментировать
0
806 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector