No Image

Кресло 5101 / сиденье 5101

СОДЕРЖАНИЕ
0
3 просмотров
07 февраля 2020

Сравнение сервисов

В поиске самых популярных сервисов очень помог доклад Александра Ожгибесова на BDD-2017, к тем, что у него было добавлено еще несколько сервисов, получился такой список:

  1. Топвизор
  2. Pixelplus
  3. Serpstat
  4. Rush Analytics
  5. Just Magic
  6. Key Collector
  7. MindSerp
  8. Semparser
  9. KeyAssort
  10. coolakov.ru

Первое на что проверялись полученные в результате кластеризации эталонного ядра по этим сервисам группы – это не делает ли сервис слишком широкие группы. А именно не попали ли запросы из разных групп эталонного ядра в один кластер по версии сервиса.

Но только такого сравнения не достаточно. Сервисы делятся на два подхода к некластеризованному остатку фраз:

  • сделать для них общую группу «Некластеризованные»;
  • сделать для каждой некластеризованной фразы группу из нее одной.

В сравнении я использовал оба этих параметра в виде соотношения – какой процент фраз от общего количества попал не в свою группу.

Результаты сравнения:

  • Топвизор
    • разные группы эталона в одной по сервису – 4%
    • одна группа эталона в разных по сервису – 7%
  • Pixelplus
    • разные группы эталона в одной по сервису – 0%
    • одна группа эталона в разных по сервису – 7%
  • Serpstat
    • разные группы эталона в одной по сервису – 0%
    • одна группа эталона в разных по сервису – 3%
  • Rush Analytics (132 фразы, demo)
    • разные группы эталона в одной по сервису – 11%
    • одна группа эталона в разных по сервису – 8%
  • Just Magic
    • разные группы эталона в одной по сервису – 0%
    • одна группа эталона в разных по сервису – 9%
  • Key Collector
    • разные группы эталона в одной по сервису – 12%
    • одна группа эталона в разных по сервису – 16%
  • MindSerp – не удалось получить демо, не выходят на связь
  • Semparser
    • разные группы эталона в одной по сервису – 1%
    • одна группа эталона в разных по сервису – 3%
  • KeyAssort
    • разные группы эталона в одной по сервису – 1%
    • одна группа эталона в разных по сервису – 1%
  • coolakov.ru
    • разные группы эталона в одной по сервису – 0%
    • одна группа эталона в разных по сервису – 18%

Методика сравнения

Суть сравнения сервисов в следующем: выбрать идеально кластеризованный список запросов – эталонное ядро. Сравнить результаты кластеризации каждого сервиса с эталонным.

Важно было хорошо составить такое эталонное ядро. Поскольку у нас контентный проект и большая часть контента – это вопросы и ответы пользователей, то материала для сбора статистики по проекту предостаточно

Было взято ядро на 2500+ ключевых фраз, которое отслеживается уже много месяцев. Из него выбраны только запросы вышедшие в топ-5 Яндекса. И из них взяты только те которые имеют релевантной страницу одного из широких разделов (категория вопроса, тема вопроса, категория документа, страница с формой «задать вопрос»), а не узкую страницу вопроса с ответами. Запросы были сгруппированы по релевантной странице. Оставлены только группы в которых более чем 4 запроса. В итоге получилось 292 запроса разбитых на 22 кластера.

Забегая вперед скажу, что сравнивались результаты кластеризации по Московской выдаче Яндекса и без геопривязки. Региональная московская выдача показала себя лучше, поэтому далее будем говорить про нее.

Резюме по кластеризации и классификации

  • Анализ кластеризации и классификации широко применяется в процессах интеллектуального анализа данных.
  • Эти методы применяются во множестве наук, которые необходимы для решения глобальных проблем.
  • В основном, кластеризация связана с неконтролируемыми данными; таким образом, немеченой, тогда как классификация работает с контролируемыми данными; таким образом, помечены. Это одна из основных причин, по которым кластеризация не нуждается в наборах для обучения во время классификации.
  • Существует больше алгоритмов, связанных с классификацией по сравнению с кластеризацией.
  • Кластеризация направлена ​​на то, чтобы проверить, насколько данные сходны или отличаются друг от друга, в то время как классификация фокусируется на определении «классов» или групп данных. Это делает процесс кластеризации более сфокусированным на граничных условиях, а классификационный анализ более сложным в том смысле, что он включает в себя большее количество этапов.

Зачем нужны сервисы кластеризации?

В один кластер должны быть объединены только такие запросы, которые имеют хорошие шансы выйти в топ-10 поисковых систем с общей релевантной страницей. То есть, если по двум запросам в выдаче все страницы сайтов разные и нет пересечений, то следует относить их к разным кластерам. Также и наоборот: если два запроса возможно продвинуть на одной статье, то не следует разносить их на разные кластеры, чтобы не писать лишнего – бюджет на контент не резиновый.

Общая схема составления ТЗ на написание SEO-статьи следующая:

Сбор семантики – статистика поисковых систем, базы семантики, внутренняя статистика проекта;
Кластеризация автоматическая – сервис или программа для кластеризации по подобию топов;
«Посткластеризация» ручная – обработка того что не удалось кластеризовать автоматически;
Приоритезация – определение важности полученных запросов в каждом кластере;
Оформление ТЗ для копирайтера – лемматизация, LSI и различные указания для написания статей, по статье на каждый кластер.

Вот именно для второго пункта нужно было выбрать самый подходящий сервис автоматической кластеризации. Для этой цели я провел сравнительный анализ самых известных, на мой взгляд, сервисов.

Список источников

  • ru.esdifferent.com
  • habr.com

Похожие статьи

Комментировать
0
3 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector