aed3cc8b3952371de7ba968af0afa1b6.png

Генераторы от 0,5 квт до 1,5 квт

СОДЕРЖАНИЕ
0
28 просмотров
15 февраля 2020

Обзор моделей

В нашей стране есть несколько предприятий, занимающихся производством паровых электрогенераторов. В частности, речь идет о турбогенераторах компаний «Калужский турбинный завод» и ОАО «Росэлектромаш». Рассмотрим несколько моделей, произведенных на обоих предприятиях.

ПТ-40/50-8,8/1,3 представляет собой паровую турбину, используемую в различных схемах с утилизацией тепловой энергии, а также отходов производственного типа. Среди потенциальных покупателей данной продукции числятся крупные промышленные предприятия и электростанции.

Технические характеристики:

  • показатели номинальной мощности — от 12000 кВт до 80000 кВт;
  • показатель давления пара — от 3 до 12,8 МПа;
  • температурные показатели пара — от 420 до 550 C;
  • производственное давление — от 0,5 до 1,75 МПа;
  • отопительное давление — от 0,07 до 0,25 МПа.

П-6-3,4/1,0 — это турбина парового типа, обладающая производственным отбором пара.

Технические характеристики:

  • показатели номинальной мощности — от 4000 кВт до 55000 кВт;
  • показатель давления пара — от 1,1 до 8,8 МПа;
  • температурные показатели пара — от 260 до 445 C;
  • производственное давление — от 0,4 до 1,3 МПа.

ПР-13/15,8-3,4/1,5/0,6 используется во многих ТЭС, а также на предприятиях промышленного типа, где присутствует необходимость в подаче пара заданного показателя.

Технические характеристики:

  • показатели номинальной мощности — от 2500 кВт до 35000 кВт;
  • показатель давления пара — от 1,2 до 9,3 МПа;
  • температурные показатели пара — от 290 до 540 C;
  • производственное давление — от 0,4 до 1,75 МПа;
  • давление за турбиной — от 0,07 до 0,9 кПа.

К-66-8,8 относится к конденсационным типам паровых турбин.

Технические характеристики:

  • показатели номинальной мощности — от 6000 кВт до 70000 кВт;
  • показатель давления пара — от 1,57 до 12,8 МПа;
  • температурные показатели пара — от 320 до 500 C;
  • давление за турбиной — от 4 до 10,6 кПа.

К-37-3,4 — это паровая турбина конденсационного типа, обладающая воздушным конденсатором.

Технические характеристики:

  • показатели номинальной мощности — от 37000 кВт до 37300 кВт;
  • показатель давления пара — от 2,9 до 3,7 МПа;
  • температурные показатели пара — от 390 до 445 C;
  • давление за турбиной — 15 кПа.

Данная продукция производится на Калужском турбинном заводе. Теперь рассмотрим модели от ОАО «Росэлектромаш». Здесь представлены уже полноценные турбогенераторы, в которых используются турбины парового и газового типа.

Вне зависимости от марки модели, в комплект продажи входят следующие комплектующие:

  • генератор;
  • система возбуждения;
  • аппаратные органы автоматики, сигнализации и контроля;
  • запчасти;
  • специальный инструмент для монтажа и сопутствующие материалы;
  • различные инструкции по применению.

Нашему вниманию представлены турбогенераторы серии ТВФ. Описывать их детально не имеет смысла, поэтому посмотрим на их технические данные.

Технические характеристики ТВФ-63-2:

  • показатель мощности — 63000 кВт;
  • степень напряжения — 6300 В;
  • статорный ток — 7217 А;
  • частота вращения — 3000 оборотов в минуту;
  • КПД в процентном соотношении — 98%;
  • общий вес — 107900 кг.

Технические характеристики ТВФ-63-3600:

  • показатель мощности — 50000 кВт;
  • степень напряжения — 11000 В;
  • статорный ток — 3280 А;
  • частота вращения — 3600 оборотов в минуту;
  • КПД в процентном соотношении — 98,3%;
  • общий вес — 107950 кг.

Технические характеристики ТВФ-110-2E:

  • показатель мощности — 110000 кВт;
  • степень напряжения — 10500 В;
  • статорный ток — 7560 А;
  • частота вращения — 3000 оборотов в минуту;
  • КПД в процентном соотношении — 98,4%;
  • общий вес — 145000 кг.

Технические характеристики ТВФВ-110-2:

  • показатель мощности — 110000 кВт;
  • степень напряжения — 13800 В;
  • статорный ток — 5752 А;
  • частота вращения — 3000 оборотов в минуту;
  • КПД в процентном соотношении — 98,45%;
  • общий вес — 190000 кг.

Стоимость данных моделей нужно уточнять у производителя, но можно сказать, что она переваливает за несколько миллионов рублей.

Устройство и принцип действия

По своим конструктивным особенностям, котельные установки обладают достаточно схожей структурой. В их состав входит несколько рабочих узлов, которые принято считать определяющими — непосредственно сам котел, электрический генератор и турбина. Последние два составляющих образуют кинетическую связь между собой, а одной из разновидностей подобных систем является турбинный электрогенератор парового типа.

Если смотреть более глобально, то подобные установки представляют собой полноценные тепловые электростанции, пусть и меньших габаритов. Благодаря своей работе, они способны обеспечивать электричеством не только гражданские объекты, но и крупные промышленные отрасли.

Сам же принцип действия паровых электрических генераторов сводится к следующий основным моментам:

  • Специальное оборудование производит нагрев воды до оптимальных значений, при которых она испаряется, образуя пар.
  • Получившийся пар поступает дальше, на роторные лопатки паровой турбины, что приводит сам ротор в движение.
  • В результате мы получаем сначала кинетическую энергию, преобразованную из получившейся энергии сжатого пара. Затем кинетическая энергия переходит в механическую, что приводит к началу работы турбинного вала.

Электрический генератор, входящий в конструкцию таких паровых установок, является определяющим. Это объясняется тем, что именно электрогенераторы осуществляют переход механической энергии в электрическую.

Это описание одной установки парового типа. Если требуется выделение большего количества энергии, то используется совокупность нескольких установок, объединенных вместе.

Подобное решение должно приниматься строго индивидуально, в зависимости от типов объекта, а также параметров требуемой мощности энергии. Только при таком грамотном подходе можно избежать убыточности в данном вопросе.

Противодавленческие турбины

Противодавленческие турбины имеют маркировку — Р. В составе таких турбин отсутствует конденсатор, а весь отработавший пар идёт с каким-либо небольшим давлением стороннему потребителю.

Этот тип турбин в настоящее время, как и турбины ПТ, не находит применение за редким исключением. После распада Советского Союза многие такие турбины «пылились» без дела, так как отсутствовал внешний потребитель отработавшего пара. Без потребителя пара невозможна и их эксплуатация, а значит и выработка электричества.

Паровая турбина Р-27-8,8/1,35:

https://youtube.com/watch?v=wuh5JonCKTA

Но позже нашли оригинальное решение их модернизации. В пару к таким турбинам начали устанавливать небольшие турбины типа К (конденсационные), рассчитанные на работу с низким давлением пара. Т.е после того, как пар отработал в турбине Р, он не идёт стороннему потребителю, а поступает на вход дополнительно установленной турбины типа К, где завершает свою работу и конденсируется в конденсаторе.

Теплофикационные турбины

Турбины типа — Т. Этот вид турбин устанавливают на ТЭЦ, т.е. там, где помимо выработки электричества, ещё нужно получать тепловую энергию — отопление и горячее водоснабжение.

У теплофикационных турбин существуют регулируемые теплофикационные отборы пара. Регулировка осуществляется поворотной диафрагмой. Пар с такого отбора поступает в сетевые подогреватели — теплообменники, где пар передаёт своё тепло сетевой воде.

Теплофикационные турбины, как правило, могут работать и в конденсационном режиме, например, в летнее время. В таком случае пар на сетевые подогреватели не поступает, а весь используется для выработки электричества.

Теплофикационные турбины в России производятся на УТЗ — Уральском турбинном заводе.

Сферы применения

Известно, какое широкое применение имеет паровая турбина. Но точно так же известно, что сложное устройство и большой вес турбины на единицу мощности ограничивают ее применение во многих областях техники. Спиральная турбина будет отличаться весьма несложным устройством, и можно предполагать, что ее вес, приходящийся на единицу мощности, будет значительно меньше, чем у существующих типов турбин.

Если бы удалось, например, построить турбину, вес которой на одну лошадиную силу составлял бы 500 граммов, то была бы решена проблема турбосамолета. А над этой проблемой в настоящее время усиленно работает мировая авиационная техника. Как известно, бензиновые моторы не приспособлены для работы на больших высотах. Замена этих моторов турбиной значительно ускорила бы завоевание стратосферы.

Широкое применение сможет найти спиральная турбина и в автомобильном транспорте. Она значительно упростила и удешевила бы эксплуатацию автомобиля и привела бы к созданию новых конструкций, так как спиральные диски можно разместить, например, внутри колес.

Особенно большую роль спиральная турбина может сыграть в железнодорожном транспорте будущего. В некоторых странах уже сейчас строятся турбовозы. Однако турбины, устанавливаемые на паровозах, отличаются чрезвычайно сложным устройством. Спиральная же турбина исклю­чи­тельно проста, к тому же, замкнутый цикл работы турбины позволит поездам пробегать большие расстояния без пополнения запасов воды.

Однако этим далеко не исчерпываются те интересные возможности, которые следует ожидать от нового теплового двигателя. Представьте себе огромное колесо, диаметр которого равен 8 метрам. Это больше высоты двухэтажного дома. По окружности колеса расположены рессоры, которые выполняют роль амортизаторов. Рессоры с внешней стороны закрыты ободом. Обод состоит из отдельных звеньев, соединенных шарнирно, и напоминает гусеничный ход. Только здесь гусеница двигается не самостоятельно, а вместе с гигантским колесом, на ободе которого она натянута.

Внутри колеса установлена спиральная турбина. Колесо с боков закрыто дисками, которые вос­при­нимают всю нагрузку машины. На ось колеса по обеим сторонам насажены два больших полу­шария. К ним подходят хвостовики, похожие на фюзеляжи самолетов. Под фюзеляжами рас­по­ло­жены два небольших опорных колеса. Хвостовое оперение этого сухопутного корабля объеди­нено и состоит из руля глубины и рулей поворота.

Внутри фюзеляжей расположены мощная котельная установка, конденсатор и нагнетательный насос. Здесь же хранятся и запасы горючего.

Полушария разделены на четыре этажа. Самый нижний предназначен для багажа и товарных грузов. Во втором и третьем этажах размещены пассажирские каюты, радиоузел, ванные комнаты и т. п. На верхнем этаже в носовой части находятся рубки управления, а на остальной площади – салон. Сквозь стеклянные стены салона пассажиры могут наблюдать быстро меняющийся пейзаж. Скорость такого фантастического корабля очень велика: на хорошей дороге он сможет покрывать до 500 километров в час.

Такой корабль легко сможет преодолевать огромные пространства песчаных пустынь. Для лучшей проходимости в песках обод колеса можно сделать еще шире, чем в первом случае, а фюзеляжные колеса заменить лыжами.

Корабль во время стоянки опирается на три точки: на центральное большое колесо и на два боковых, фюзеляжных. Подобно самолету, корабль имеет небольшой наклон. Когда же он разовьет достаточную скорость, водитель, действуя рулем глубины, придаст всей машине горизонтальное положение. Таким образом, движение происходит только на одном большом колесе.

Повороты на больших скоростях производятся с помощью воздушных рулей. Торможение осу­ще­ств­ляется переключением пара на выходную трубку. Вследствие этого пар в спиральном колесе начи­нает циркулировать в обратную сторону: скорость движения угасает, и корабль останавливается.

Можно создать такой же формы и морское судно. При этом по ободу большого колеса расположатся широкие лопатки для отталкивания от воды, а колеса фюзеляжей будут заменены поплавками.

Описание работы[править | править код]

Подайте в парогенератор некоторое количество воды. Для того, чтобы жидкость не вытекала обратно, увеличьте давление до максимума. После загрузки жидкости начните подавать тепло к устройству, не изменяя давления.

Парогенератор во время работы

При достижении температуры в 100 C и выше парогенератор станет способен выдавать пар на выходе. Будьте осторожны – в результате нагревания до 500 C устройство взрывается.

Для того, чтобы извлечь пар из устройства, снизьте давление до нуля, после чего немного увеличьте счетчик выдаваемой жидкости в нижней части интерфейса. Учитывайте, что чем больше жидкости выдает парогенератор, тем быстрее понижается температура внутри прибора.

Результат работы парогенератора. При использовании данной схемы необходимо поставить около 10 баков вместо двух

Наиболее правильное применение в качестве переработки тепла в сжатый или перегретый пар (Super Heated Steam) в паре с жидкостным ядерным реактором. Способен принимать до 1200 еТЭ/т . К сожалению, на момент написания статьи самым передовым теплообменником является жидкостный теплообменник и электрический теплогенератор, но каждый из них может отдавать не более 100 еТЭ/т . Так как сторон у парогенератора всего 6, и одна уже занята на извлечение пара и поставку воды то уже остаётся 5 сторон, что есть 500 еТЭ/т.

Формулы необходимого количества тепла в такт для генерации перегретого пара(Super Heated Steam):

Расчёт необходимого давления:

для начала оговорим что перегретый пар выделяется при температуре 375 градусов.

TargetTemp = 100 + (pressurevalve / 220F * 274)

где:

TargetTemp – предельная температура нагрева

pressurevalve – текущее давление

Объяснение:

от сюда уже видно что если давление будет 220 то целевая температура будет 374, а нам нужно 375. Соответственно наше решение это 221 бар.

Расчёт необходимого тепла:

hu_need = (100 + ((pressurevalve / 220F) * 100F)) * inputmb

где:

hu_need – сколько тепла нужно дать парогенератору в такт

pressurevalve – текущее давление

inputmb – количество воды в мили бакетах(mb) которую мы подаём на вход

Объяснение:

опять же если мы возьмём давление 220 то необходимая температура будет 200 еТЭ/т на 1 mb. То есть с каждым подаваемым мили бакетом на вход количество необходимой принимаемой температуры растёт в равное количество раз.

1mb = 200еТЭ/т

2mb = 400еТЭ/т

3mb = 600еТЭ/т

Примечание:

На данный момент 2 mb под давлением 221 с потребление 400 еТЭ/т есть самым оптимальным вариантом(так как 600 уже не подашь). Что генерирует 200 mb\t сжатого пара. При работе с ядерным реактором рекомендовано использовать дистиллированную воду так как из-за накипи принимающие свойства парогенератора падают(или скорее должны падать но на данный момент написания статьи только при 100% накипи парогенератор перестаёт работать).

Формулы взяты из исходного кода мода версии 2-2.2.810

Целесообразность эксплуатации

Говорить о целесообразности покупки парового электрогенератора для личных нужд не приходится, потому что его стоимость очень высока для обычного бытового использования. Иными словами, подобные вложения вряд ли окупятся в течение жизни потенциального покупателя. Кроме того, габаритные размеры подобных установок, что размещать их необходимо на очень большой территории. Именно поэтому, на бытовом уровне используются агрегаты, у которых двигатель работает на бензине или дизеле, а для крупных предприятий как раз и подходит двигатель, работающий на пару.

Что касается использования электрогенераторов, работающих на пару, то их использование в котельных установках может принести определенные плоды. Дело в том, что по достижении некоторых показателей мощности, данные установки показывают очень хорошие рабочие характеристики, выгодные отличающие их от своих аналогов.

Подробный рассказ про паровой генератор

Строительство[править | править код]

Схема постройки большой паровойтурбины
Слой 3
Слой 2
Слой 1
▬ В этих местах можно размещать в любойкомбинации входные, выходные,обслуживающие шлюзы или же обшивку. Нодля ремонта потребуется обслуживающийшлюз и для подачи пара входной шлюз.

Большая паровая турбина строится в виде многоблоковой структуры 4x3x3. Для постройки используются стандартные обшивки механизмов.
Основной блок паровой турбины ставится в центре у начала конструкции, по бокам устанавливаются различные шлюзы, а именно входной, выходной, генерирующий и обслуживающий, выводящий ставится сверху.

Также, немаловажным аспектом при постройке данной конструкции является положение данных шлюзов и самого блока турбины, все они должны быть повёрнуты лицевой стороной от конструкции. То есть, если смотреть на конструкцию снаружи, вы должны видеть эти стороны даже после полной постройки.

Не должно быть блоков, касающихся «лицевой» стороны постройки (там где блок турбины). Иначе будет выдаваться ошибка о некорректной постройке. Но, если сначала турбину запустить, а после поставить блоки — она продолжит работу.

Все шлюзы турбины и их предназначения: — служит для загрузки пара. Пар можно передавать по трубам. Также некоторые моды позволяют загружать пар в виде специальных предметов. В конструкции турбины должен быть как минимум один входной шлюз. — в нём накапливается вода. Её можно забрать с помощью труб или капсул. Но если вам в принципе вода не нужна, то его можно даже не устанавливать. — вырабатывает энергию. Чтобы передавать энергию через стекловолоконный провод, нужно установить трансформатор высокого напряжения на выходе шлюза. — имеет внутри себя один слот, служащий для исправления проблем с турбиной.

Интерфейс[править | править код]

После установки основного блока паровой турбины можно открыть её интерфейс.
Слот в верхнем правом углу предназначен для размещения ротора турбины. На дисплее показываются неполадки и текущий статус устройства.

Для начала работы следует исправить все проблемы показанные на дисплее:
Pipe is Loose — Не закреплена труба. Исправляется гаечным ключом;
Screws are missing — Не закручены винты. Исправляется отвёрткой;
Something is stuck — Что-то застряло. Исправляется резиновым молотом;
Platings are dented — Вмятины на корпусе. Исправляется металлическим молотом;
Circuitry burned out — Сгорела плата. Исправляется паяльником (припой должен быть в инвентаре);
That doesn’t belong there — Лишнее детали. Исправляется монтировкой;
Incomplete Structure — Конструкция построена неправильно. Проверьте правильность постройки.

Все проблемы, кроме неправильно построенной конструкции, исправляются в обслуживающем шлюзе при нажатии левым кликом инструментом на слот ремонта.Дополнительно, вместо всех этих инструментов можно использовать  Сверхпрочный сантехнический скотч FAL-84 (Аэрокосмические технологии). После чего обслуживающий шлюз будет выглядеть как будто на него наклеили этот скотч. Чтобы исправить все проблемы хватает одного скотча. Хотя его можно использовать несколько раз, этого делать не стоит — вы просто истратите его зря.

Далее после устранения всех проблем, интерфейс будет выглядеть следующим образом.
Теперь устройство готово к работе. Для запуска вставьте ротор турбины в слот и стукните резиновым молотом по главному блоку.

Внимание: Проблемы, описанные сверху не одноразовые. После продолжительной постоянной работы они возникнут снова, не останавливая процесс, но понижая эффективность на 10 %

Вдобавок нужно следить за состоянием ротора. Если он полностью потеряет прочность и сломается, то блок турбины сразу же взорвётся.

Принцип действия спиральной турбины

Действие паровой машины основано на превращении энергии водяного пара в механическую работу. Этот принцип известен давно. Еще во II в. до нашей эры знаменитый греческий ученый Герон Александрийский дал описание первой паровой машины – эолипила. Эолипил представляет собой шар, вращающийся вокруг горизонтальной оси. От шара вверх и вниз отходят две трубки, изогнутые коленом. Своими выходными отверстиями трубки направлены в противоположные стороны. Ось шара одновременно является и трубопроводом, по которому из котла поступает пар. Когда пар наполнит эолипил и начнет с силой вырываться из отверстий коленчатых трубок, шар приходит во вращательное движение.

Прибор Герона основан на так называемом реактивном принципе. Пар в коленчатой трубке давит равномерно на ее стенки. Однако с одной стороны колена это давление уничтожается тем, что пар имеет свободный выход через отверстие. Таким образом внутри трубки создается разность давлений: меньшее – в сторону выходящей струи пара, и большее – в противоположную. В результате возникают силы, направленные в сторону, обратную движению струи пара. Эти силы приводят шар во вращение.

Идея Герона нашла воплощение в современных турбинах реактивного действия. Однако практи­чески сначала были осуществлены турбины прямого действия, которые используют активную силу пара. В активных турбинах пар или вода ударяет в лопатки, насаженные на окружности колеса, и заставляет это колесо вращаться. Простейшим примером такого двигателя может служить колесо водяной мельницы.

В современных наиболее совершенных турбинах используется одновременно и активная и реак­тивная сила пара. Достигается это особым устройством лопаток, насаженных на диске турбины. Такое сочетание обоих принципов повышает коэффициент полезного действия двигателя.

Однако можно представить себе турбину нового типа, в которой энергия пара использовалась бы более полно, чем у существующих турбодвигателей. Устройство такой турбины мыслится в следу­ющем виде. Ротором, т. е. основной вращающейся частью ее, является диск, представляющий сдвоенное спиральное колесо. Как этот диск получается? Длинную трубу скручивают спиралью в одной плоскости так, что диаметр витков постепенно увеличивается. Таким образом закручивают половину трубы. Из другой половины навивают вторую спираль, витки которой теперь уже умень­шаются. В результате получаются две прижатые друг к другу спирали. Концы трубы, оказав­ши­еся в центре обеих спиралей, отгибают в противоположные стороны. Они и служат осью полученного сдвоенного спирального колеса.

Это колесо заключают в кожух, имеющий по оси две втулки. Внутри втулок проходят концы спирали. Один конец при помощи подшипника соединяется с трубкой, идущей от парового котла, а другой конец спирали таким же способом соединяется с трубкой, идущей к конденсатору-холодильнику.

Весь турбинный агрегат состоит из следующих частей: спиральный диск, или ротор, котел для парообразования, конденсатор, куда поступает отработанный пар, и насос для перекачки воды из конденсатора в котел.

Что произойдет, если из котла пустить пар по спиральному диску? Внутренние стенки спирали-трубы не представляют идеально гладкой поверхности, поэтому между паром и внутренней поверх­ностью трубы возникает трение. Если пар будет обладать достаточно большой кинетической энергией, то, проходя по трубе, он будет как бы увлекать ее с собой, и спираль начнет вращаться. Таким образом, кинетическая энергия пара преобразуется в механическую работу вращающегося спирального диска.

Такова основная идея новой турбины.

По внутренним стенкам спирали можно расставить в шахматном порядке небольшие лопатки, закрепленные неподвижно. Это позволит использовать также и активную силу пара, что еще больше ускорит вращение спиральных колес.

Отработанный пар, пройдя спираль, попадает в конденсатор, где превращается в воду. При помощи насоса воду перекачивают обратно в котел. Таким образом создается замкнутый цикл.

Если бы удалось преодолеть различные технические трудности и практически осуществить новый двигатель, то перед техникой открылись бы весьма заманчивые перспективы.

Назначение

Подобного рода агрегаты имеет смысл использовать в тех отраслях современной промышленности или бытовой сферы, где наблюдается достаточное большое количество парообразований, которые можно использовать в качестве преобразователя в электроэнергию. Именно генераторы парового типа получили широкое использование в котельных установках, где они образуют некую тепловую электростанцию вместе котлом и турбиной.

Такие агрегаты позволяют существенно экономить на своей эксплуатации, а также снизить затраты на получение электрической энергии. Именно поэтому, паровые установки зачастую считаются одними из основных рабочих узлов многих электростанций.

Кроме того, если изучить принцип действия, а также конструктивные особенности подобных паровых генераторов, можно попытаться реализовать их своими руками, с помощью определенных средств. Однако, о данной возможности пойдет речь чуть позже.

Технические характеристики[править | править код]

  • Потребление пара — 1600 мВ/такт (или 32 ведра за секунду)
  • Генерация воды в выходном шлюзе — 10 мВ/такт (1/160 часть от потребляемого пара).
  • Максимальное напряжение на выходе — от 480 до 1000 еЭ/такт, в зависимости от ротора. Формула — 800 еЭ/такт * эффективность ротора. Можно использовать ротор из Railcraft его эффективность равна 80 %, как и у стального. Если вы используете в качестве кабеля стекловолокно, то рекомендуется устанавливать трансформатор ВН, поскольку напряжение может быть выше 512 еЭ/такт(Не относится к IC2 Experimental так как стекловолокно в этой версии выдерживает напряжение 8192 eu/t)

Паровая турбина работает по похожему принципу, что и большая газовая турбина. Но пар расходуется слишком быстро и обеспечить непрерывную подачу через трубы очень сложно, даже если использовать очень быстрые трубы которые появились в моде.

Скорость работы жидкостных труб определённая по тестам в игре:

  • Булыжниковая, каменная, железная трубы из BuildCraft — около 160 мВ/сек
  • Золотая, изумрудная трубы из BuildCraft — около 800 мВ/сек
  • Бронзовая жидкостная труба — 2400 мВ/сек
  • Стальная жидкостная труба — 4800 мВ/сек

Для обеспечения турбины паром больше подходит следующий способ: нужно установить на входной шлюз модуль помпы и настроить его на импорт (Import) с помощью отвёртки. Затем поставить вплотную к шлюзу ёмкость, позволяющую накопить большое количество пара, например: баки из BuildCraft, резервуар из Railcraft, или квантовую цистерну или что-то ещё. И наполнить эту ёмкость паром, например от дешёвых угольных котлов. Когда накопится большое количество пара, то можно запустить на некоторое время турбину и получать электричество. Но скорость одного модуля помпы недостаточна (1000 мВ/такт, а нужно 1600 мВ/такт) для непрерывного обеспечения турбины паром. Поэтому вам потребуются два таких входных шлюза с ёмкостями.

Также вместо ёмкостей для пара можно приставить вплотную два тепловых котла. Их скорость генерации пара фактически равна скорости его потребления данной турбиной.

Уменьшение прочности ротора и поломки происходят следующим образом. Каждые 50 секунд (1000 тактов) рассчитываются такие шансы. С вероятностью 1/6000 происходит поломка случайного типа (всего их 6 разных см. выше) и эффективность механизма уменьшается на 10 %. То есть в среднем поломка проходит очень редко — один раз за 80 часов. Также с вероятностью 50 % происходит уменьшение прочности ротора на 1 единицу, а если это ротор из Railcraft, то с той же вероятностью он теряет 2 единицы прочности.

Как сделать паровую турбину в домашних условиях?

Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.

В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П. Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают. Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.

Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.

Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.

С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника. В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя. Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.

Заключение

Электрогенераторы турбинного типа пользуются определенной популярностью среди множества промышленных предприятий и электростанций. Однако, прежде чем приобретать подобные устройства, необходимо произвести точный расчет целесообразности их использования, чтобы предприятие работало не в убыток себе.

Что касается применения на бытовом уровне, то в этом нет абсолютно никакой необходимости. Кроме того, это технически и практически невозможно, т.к. габариты данных установок очень велики, не говоря уже об их стоимости. Вопрос изготовления своими руками также достаточно спорный, в силу объективных причин сложности конструкции.

Владельцам же предприятий, которые намереваются использовать паровые установки, можно дать один совет: приобретите сначала генератор небольшой мощности, чтобы можно было оценить на практике эффективность его использования. Неслучайно ведь, что производители выпускают агрегаты от 100 кВт, подразумевая такой рациональный подход.

Список источников

  • minecraft-ru.gamepedia.com
  • cotlix.com
  • generator-prosto.ru
  • generatorexperts.ru
  • tesiaes.ru
  • alternathistory.com

Похожие статьи

Комментировать
0
28 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector