cc3f772bc9dcf5e28a821f76390ff182.jpg

Монокристаллическая солнечная батарея silasolar 50вт

СОДЕРЖАНИЕ
0
42 просмотров
07 февраля 2020

Солнечная батарея своими руками

Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.

Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.

Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.

https://youtube.com/watch?v=-6RG9SfBkP0

Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.

Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.

Современные устройства со встроенными солнечными модулями

Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.

Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.

Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.

Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.

Экономия?

Мы живем в России, где тарифы на электричество увеличиваются каждый год. Конца этой тенденции не предвидится. Поэтому возникает закономерный вопрос – рентабельно ли использовать солнечные батареи как полноценную замену обычному электричеству? Современный рынок предлагает готовые системы. Это очень удобно – не придется тратиться на покупку панелей штучно (что выйдет дороже), не надо искать подходящий инвертор и аккумулятор. Все уже собрано, приходи и бери. Средняя стоимость такой системы 100 000 рублей. Ее выходная мощность = 1,6 КВт. Пиковая мощность частных домов регламентирована с показателем 14,5 КВт. Произведя простые расчеты, получаем, что понадобится 9 систем, что обойдется в 900 000 рублей.

Теперь посчитаем, сколько среднестатистическая семья тратит на электричество. Стоимость киловатта примерно 3 рубля. Сумма разнится в зависимости от региона России. В среднем человек потребляет 100 КВт в месяц. Учтем, что на жизнь в частном доме нужно больше и умножим эту сумму на 1,5. Получается, что семья из трех человек тратит суммарно 450 киловатт в месяц. Это 1350 рублей в месяц. Учитывая, опять же, индивидуальные показатели, которые могут варьироваться, округлим число до 1300. Выходит, что за год на электричество тратится 15600 рублей. Это та сумма, которую мы экономим при использовании солнечных батарей. Теперь разделим полную стоимость системы на годовую экономию (900 000/15 600) и получим срок окупаемости, равный 57 годам. И это как минимум ведь в регионах, где инсоляция меньше панелей понадобится больше. Срок службы системы – от 25 лет. Т.е. с высокой вероятностью система не успеет себя окупить за свой срок службы.

Баги Astroneer

1. Баг с транспортом. Периодически транспорт после посадки в него перестает реагировать на управление (в патчноуте 1.0.7 написано, что исправили,но я не проверял). Лечится, как правило, несколькими посадками в транспорт, либо перезагрузкой игры.

2. Также есть баг, с буром. Периодически при игре соло, и всегда при мультиплеере, при включении бура планетоход перестает реагировать на управление и движется по инерции. Не Лечится, но постоянным включением и отключением бура, можно направлять планетоход.

3. При добыче ресурсов, если получаемый ресурс на деформаторе почвы находится в текстурах, хотя бы наполовину, он проваливается под текстуру. Это особенно неприятно на начальной стадии игры, когда, и ресурсов, и места для их переноски мало.
Разработчики в описании патча 1.0.6 указали, что поправили данный баг, но у меня это произошло снова.

4. Баг с шаттлом. В мультиплеере, если игрок, с которым вы играете, вылетит из игры, находясь на орбите в шаттле, то шаттл навечно останется летать на орбите. А игрок респавнется на планете. У меня так два больших шаттла осталось летать вокруг Сильвы и Гласио. Баг не лечится (по крайней мере у меня).

5. Баг с достижениями «Путешествие к центру всего» и «Копать слишком жадно и глубоко».

Пробовали все, и вручную буриться к «мантии», и кататься на последнем уровне подольше, и ресурсы там собирать, и контейнеры открывать. Пробовали на Сильве, Гласио, Атроксе, Везании, проверяем версию, что может нужна определенная планета и кататься дольше. Достижение не зачитывается. Не лечится.

6. Баг с модификациями на инструмент. Как известно на инструмент можно установить до трех модификаций. При установке, в месте соединения начинает светиться зеленое кольцо. Баг в том, что иногда кольцо не загорается, и модификатор не работает.
Лечится перестановкой модификаторов местами до тех пор, пока все кольца не засветятся зеленым.

Корпус

Конструкция корпуса солнечной батареи включает в себя, помимо самих фотоячеек, несколько элементов:

  • Защитную алюминиевую рамку. Она придает корпусу жесткость и предохраняет торцы от проникновения влаги;
  • Стекло. Стекло используется закаленное, антибликовое, оно обеспечивает более эффективное поглощение солнечного спектра и защищает фотоячейки;
  • Ламинирующие слои. Они располагаются сверху и снизу фотоячеек и обеспечивают герметизацию конструкции в сочетании с удалением зазоров между стеклом и фотоячейками;
  • Заднюю стенку. Обычно ее изготавливают из легкого, но прочного материала, вплоть до толстой PET-пленки;
  • Клеммную коробку. Коробка включает в себя соединительные клеммы для интеграции солнечной батареи в общую структуру.

Причем качество этих составных элементов у разных производителей (особенно – малоизвестных) может сильно отличаться, и зачастую не в лучшую сторону

Поэтому при выборе солнечной батареи репутации производителя нужно уделить особое внимание. Дело в том, что некачественные корпуса очень быстро выходят из строя, в результате чего гелиопанель не сможет выполнять свои функции

Как работают гелиобатареи

Работают все солнечные батареи по одному принципу – фотоэффекту, иными словами, образованию тока под действием солнечных лучей в определенных материалах (полупроводниках с разными примесями). Лучи солнца, попадая на поверхность двухслойной полупроводниковой пластины, передают электронам верхнего слоя дополнительную энергию. В результате этого электроны начинают движение и переходят в нижний, второй слой. Таким образом, слои полупроводников играют роль своеобразных электродов, между которыми возникает ток.

Но подобная конструкция солнечных батарей подразумевает и несколько нюансов. Например, полупроводники должны быть разного типа проводимости (один – так называемого «дырочного», с избытком положительных зарядов, второй – «электронного», с избытком отрицательного заряда). Кроме того, ширина зоны перехода электронов должна быть не больше определенной величины, чтобы электроны могли ее преодолеть. Именно поэтому принцип действия одинаков для всех солнечных ячеек.

Способ применения

Одна из главных целей развития науки – сделать жизнь человека проще при меньших затратах. На сегодняшний день солнечные батареи могут обеспечить автономным отоплением, независимым энергоснабжением. Что позволит избежать таких неприятностей, как заморозка теплоносителя и отключения электричества. Плюсом ко всему идет экономия на вышеозначенных аспектах быта. Чтобы не быть голословным, приведем пример расчета использования преобразователя и узнаем, так ли все хорошо как кажется.

Для отопления частных домов обычно используют электрические котлы. В среднем, потребляемая мощность всего оборудования составляет 300 Вт/час. Возможно больше. Перед индивидуальным расчетом следует заглянуть в техническую документацию котла, где приведены все параметры. Для получения мощности 300 Вт/час достаточно монтажа двух солнечных панелей.

Распространено мнение, что такой способ обеспечить дом энергией доступен только в солнечную погоду. Это далеко не так. В состав преобразователя входит аккумулятор, который накапливает энергию, для дальнейшего использования. Так что при отсутствии прямых солнечных лучей в пасмурную погоду дом не останется без электричества. При условии, что правильно подобрана емкость накопителя. Здесь, опять же, нужно отталкиваться от количества потребляемой энергии.

Лидер: солнечная многослойная ячейка

Эти гелиевые преобразователи напоминают сэндвич из разных материалов, в том числе из перовскита, кремния и тонких пленок. При этом каждый слой поглощает свет только определенной длины волны. В результате эти при равной площади рабочей поверхности многослойные гелиевые ячейки вырабатывают значительно больше энергии, чем другие.

Рекордное значение эффективности многослойных фотопреобразователей было достигнуто в конце 2014 года совместной немецко-французской группой исследователей под руководством доктора Франка Димрота во Фраунгоферовском институте систем солнечной энергии. Была достигнута эффективность в 46%. Такое фантастическое значение эффективности было подтверждено независимым исследованием в NMIJ/AIST – крупнейшем метрологическом центре Японии.

Многослойная солнечная ячейка. Эффективность – 46%

Эти ячейки состоят из четырех слоев и линзы, которая концентрирует на них солнечный свет. К недостаткам следует отнести наличие в структуре субстрата германия, который несколько увеличивает стоимость солнечного модуля. Но все недостатки многослойных ячеек в конечном счете устранимы, и исследователи уверены, что в самом ближайшем будущем их разработка выйдет из стен лабораторий в большой мир.

Водяные часы

Данный способ управления поворотным устройством был изобретен одной предприимчивой канадской студенткой лет и отвечает за поворот лишь одной оси, горизонтальной.

Принцип работы также прост и заключается в следующем:

  1. Солнечная батарея устанавливается в изначальное положение, когда солнечные лучи попадают на фотоэлемент перпендикулярно.
  2. После этого к одной из сторон цепляют емкость с водой, а к другой стороне цепляют какой-нибудь предмет такого же веса, что и емкость с водой. Дно емкости должно обладать небольшим отверстием.
  3. Через него вода будет понемногу вытекать из емкости, из-за чего будет уменьшаться вес, а панель будет потихоньку наклоняться в сторону противовеса. Определить размеры отверстия для емкости придется экспериментально.

Данный способ является наиболее простым. К тому же он экономит материальные средства, которые ушли бы на покупку двигателя, как в случае с часовым механизмом. К тому же, провести монтаж поворотного механизма в виде водяных часов можно самостоятельно, даже не обладая какими-либо специальными знаниями.

Подсолнухи от IBM

Компания работает над «Фотоэлектрической тепловой системой высокой концентрации». Устройства, похожие на подсолнухи, собирают в 2000 раз больше солнечной энергии, чем плоские панели, при этом способны преобразовать в электричество до 80% собранного света и тепла.

Гибкие панели

Возможно, самую полезную технологию в сфере солнечных панелей представил стартап из Лос-Анджелеса Sunflare — гибкие солнечные панели. Гибкие они на столько, что легко сворачиваются в рулон. Такие без проблем можно поместить на любые поверхности, не зависимо от их формы. При этом их масса на 65% меньше традиционных панелей, а эффективность на 10% выше.

Солнечные крыши от Tesla

Солнечные панели давно устанавливаются на крыши домов, но Tesla пошла дальше и решила делать крыши из солнечных панелей. Специальная солнечная черепица представлена в четырех вариантах, чтобы крыша была не только источником энергии, но и не выбивалась из общего стиля дома. Компания планирует интегрировать солнечные черепки в свою энергетическую философию: они будут взаимодействовать с Powerwall 2.0 и конечно же заряжать автомобили компании. При этом Илон Маск заявил, что его крыши будут дешевле обычных.

SolarWindow — прозрачные солнечные панели

Стартап SolarWindow обещает в пятьдесят раз больше вырабатываемой энергии, сравнивая себя с образцами панелей прошедших лет. Технология компании представляется как «генерирующие энергию окна».

На самом деле речь идет о специальном прозрачном материале, который может быть нанесен на любое окно, да и на любую поверхность тоже. Образовавшаяся пленка не создает препятствий для прохождения света, так что сидящим внутри домов и офисов будет не заметно изменений, не считая сократившихся расходов на электричество. опубликовано econet.ru 

Обзор бескремниевых устройств

Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.

Солнечные панели из редких металлов

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей.

Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.


Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов

Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).

Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.

КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.

Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.

В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.

Полимерные и органические аналоги

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий.

Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.

При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.

Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.

Преимуществами органических солнечных панелей являются:

  • возможность экологически безопасной утилизации;
  • дешевизна производства;
  • гибкая конструкция.

К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.

Схема работы солнечного электроснабжения

Когда проводишь взглядом по загадочно звучащим названиям узлов, входящих в состав системы питания солнечным светом, приходит мысль о супертехнической сложности устройства.

На микроуровне жизни фотона это так. А наглядно общая схема электрической цепи и принцип ее действия выглядят очень даже просто. От светила небесного до «лампочки Ильича» всего четыре шага.

Солнечные модули – первая составляющая электростанции. Это тонкие прямоугольные панели, собранные из определенного числа стандартных пластин-фотоэлементов. Производители делают фотопанели различными по электрической мощности и напряжению, кратному 12 вольтам.

Устройства плоской формы удобно располагаются на открытых для прямых лучей поверхностях. Модульные блоки объединяются при помощи взаимных подключений в гелиобатарею. Задача батареи преобразовывать получаемую энергию солнца, выдавая постоянный ток заданной величины.

Устройства накопления электрического заряда – аккумуляторы для солнечных батарей известны всем. Роль их внутри системы энергоснабжения от солнца традиционна. Когда домашние потребители подключены к централизованной сети, энергонакопители запасаются электричеством.

Они также аккумулируют его излишки, если для обеспечения расходуемой электроприборами мощности достаточно тока солнечного модуля.

Аккумуляторный блок отдает цепи требуемое количество энергии и поддерживает стабильное напряжение, как только потребление в ней возрастает до повышенного значения. То же происходит, например, ночью при неработающих фотопанелях или во время малосолнечной погоды.

Схема энергообеспечения дома с помощью солнечных батарей отличается от вариантов с коллекторами возможностью накапливать энергию в аккумуляторе

Контроллер – электронный посредник между солнечным модулем и аккумуляторами. Его роль регулировать уровень заряда аккумуляторных батарей. Прибор не допускает их закипания от перезарядки или падения электрического потенциала ниже определенной нормы, необходимой для устойчивой работы всей гелиосистемы.

Переворачивающий, так дословно объясняется звучание термина инвертор для солнечных батарей. Да, ведь на самом деле, этот узел выполняет функцию, когда-то казавшуюся электротехникам фантастикой.

Он преобразует постоянный ток солнечного модуля и аккумуляторов в переменный с разностью потенциалов 220 вольт. Именно такое напряжение является рабочим для подавляющей массы бытовых электроустройств.


Поток солнечной энергии пропорционален положению светила: устанавливая модули, хорошо бы предусмотреть регулировку угла наклона в зависимости от времени года

Советы по выбору

В вопросе, какие солнечные батареи лучше брать для дома, важно сначала определиться, в каком режиме они будут работать. Использование солнечной энергии в быту может обеспечивать:

  • Аварийное электроснабжение. Для выбора мощности панели необходимо рассчитать, сколько потребляют приборы, которые должны работать при отключении энергии. Чаще это 4-5 кВт/ч, которые обеспечивают резервное отопление и освещение.
  • Базовое электроснабжение. В этом случае батареи замещают электрическую энергию почти полностью. Рассчитать потребуется уже суточное потребление электроэнергии.
  • Комфортный режим. На работу батарей приходятся только некоторые приборы. Чаще это духовые шкафы, телевизор, чайник и вытяжка.

Кроме ожидаемой нагрузки, имеет значение время автономной работы батареи. Оно напрямую зависит от емкости аккумулятора. Чем она выше, тем больше панель сможет накопить энергии, которая будет расходоваться в пасмурные дни

Решая вопрос, как правильно выбрать солнечную батарею для частного дома, необходимо обратить внимание и на ее разновидности

Монокристаллические

Если цена не важна, стоит выбирать монокристаллические панели. Их КПД за 25 лет снижается не более чем на 20%. Они состоят из одного кремниевого кристалла и за счет его одностороннего направления эффективнее. Такие панели выбирают в регионах с более высокой активностью солнца.

Поликристаллические

При выборе недорогих батарей для дачи или дома оптимальный вариант – поликристаллические кремниевые. Они стоят дешевле, чем монокристаллические, но вполне могут обеспечить дом достаточным количеством электричества. Здесь мелкие кристаллы объединены в фотоэлементы. По сравнению с монокристальными они менее эффективны, но лучше работают в условиях невысокой активности солнца.

Аморфные

В пасмурную погоду максимально эффективны аморфные батареи. Они работают в любых условиях: при рассвете, закате, запыленном воздухе и в дождь. Рассеянный свет обеспечивает им на 10% больше эффективности, чем у поликристалла. Благодаря гибкости, панели удобно монтировать на криволинейные поверхности, поэтому они не требовательны к углу наклона. Их располагают на крыше дома, покатых и неровных частях.

Многие интересуются, какая солнечная батарея лучше – монокристаллическая или поликристаллическая. Первая эффективнее, но требует много света. Если площадь ограничена и из нее нужно выжать максимум, лучше взять монокристаллические элементы. Когда места много, обходятся поликристаллическими. Для удобства эффективность и отличия разных панелей представлены в таблице.

Тип панелей КПД, % Стоимость, долларов
Монокристаллические 17-22 170-200
Поликристаллические 12-18 150
Аморфные 5-6 250

Экономическая целесообразность использования солнечных систем

В солнечных системах отсутствуют какие-либо подвижные узлы и детали, что в значительной степени повышает их долговечность. Минимальный срок службы, заявленный производителями, составляет 25 лет. При условии своевременного обслуживания и соблюдения правил эксплуатации, этот срок может быть увеличен до 50 лет.

Данные устройства не подвержены серьезным поломкам и неисправностям. Все обслуживание заключается в периодической очистке фотоэлементов от загрязнений, налипшего снега и т.д. Своевременный уход существенно увеличивает коэффициент полезного действия и эффективность всей системы. Во многих случаях решение о покупке и установке батарей принимается именно по причине их долговечности. После того как устройство окупит себя, получаемое электричество будет фактически бесплатным.

Полная окупаемость панелей наступает задолго до окончания срока их службы. Единственным серьезным препятствием в использовании этих устройств становится высокая стоимость. Учитывая низкий КПД, многие люди начинают сомневаться в экономической целесообразности такого способа получения электроэнергии. В связи с этим, принимая решение, нужно учитывать все факторы, характерные для данного региона.

Окупаемость и эффективность солнечных батарей зависит от следующих факторов и условий:

  • Тип солнечных панелей и оборудования, величина их КПД, начальная цена фотоэлементов.
  • Региональные климатические условия. С увеличением интенсивности солнечного излучения, срок окупаемости заметно снижается за счет большего количества произведенной электроэнергии.
  • Стоимость оборудования и монтажных работ. Региональная цена электроэнергии.

Специалисты в данной области постоянно работают над повышением эффективности и КПД солнечных панелей. Постепенно снижается и себестоимость фотоэлементов. В перспективе это значительно снизит срок окупаемости и сделает гелиосистемы доступными для широких слоев населения.

Цена одной панели солнечной батареи и целого комплекта от разных производителей

Альтернативная энергетика, направленная на преображение солнечного излучения в постоянный ток, стремительными шагами движется вперед. Количество компаний, производящих подобные системы, увеличивается с каждым годом. Лидирующее место в производстве солнечных устройств для получения электричества и тепла занимает Китай.

Средняя стоимость панели (200 Вт) / комплекта (2 000 Вт) солнечных батарей от разных производителей (в рублях):

  • Китай — Helios Haus, Suntech и др. — 12 000 / 140 000
  • Россия — ТСМ и Hevel Solar — 16 000 / 170 000
  • Европа — Viessmann Group, Solarworld и др. — 16 000 / 220 000
  • Азия — Motech, Kyocera, Sanyo и др. — 13 000 / 16 000
  • США — First Solar — 27 000 /38 000

Если взять для примера более мощный комплект — 5 000 Вт — от китайского производителя, то он обойдется примерно в три раза дороже.

Зависимость стоимости комплектов солнечных батарей от качества обслуживания

Прежде чем решится на покупку, необходимо поинтересоваться не только стоимостью комплекта солнечных батарей и надежностью фирмы-производителя, но и качеством оказываемых услуг фирмы-поставщика.

Привлекательно низкая стоимость комплекта для энергоснабжения дома может объясняться следующими ограничениями услуги:

  • не проводится предварительный расчет;
  • не производится проектирование;
  • предоставляются не все комплектующие;
  • комплект доставляется, но не монтируется;
  • не производится логистика;
  • не производится сервисное обслуживание.

Очень важно найти продавца, который оказывает помощь в установке солнечных систем, начиная с проектирования, предоставляет все комплектующие и включает гарантийное обслуживание в период эксплуатации. Сотрудничество с надежной фирмой-продавцом, работающей с качественной продукцией и с настроем на удовлетворение нужд покупателя — залог хорошего настроения и спокойствия

Перспективы в развитии солнечной энергетики

Батареи и коллекторы, работающие на природном освещении становятся доступными все большей части населения способом добычи электричества и тепла. Возрастает эффективность подобных устройств и удобство в эксплуатации. В будущем, с развитием этой отрасли электроэнергетики, на автономное обеспечение перейдет огромное количество семей. Это принесет с собой безопасность с экологической точки зрения.

Современное оборудование, преображающее солнечный свет в энергию и тепло, надежно и в перспективе прослужит много лет. Фотоэлектрические системы и солнечные коллекторы для частных домов —  уверенный шаг в будущее. Это качество, надежность и безопасность.

Смотрите видео: Солнечные батареи для дома

Основные факторы эффективной работы

Эффективная и производительная работа солнечных систем зависит от различных факторов, так или иначе влияющих на конкретное устройство. Многое зависит от температуры наружного воздуха, погоды, а также чистоты поверхности, принимающей лучи.

Большое значение имеет угол, под которым солнечные лучи падают на поверхность фотоэлемента. В идеальных условиях он должен быть прямым, что позволяет добиться максимальной эффективности. С целью увеличения КПД солнечной батареи, некоторые модели оборудуются системами слежения, автоматически изменяющими угол наклона панелей в соответствии с положением солнца в данное время. Эта опция достаточно дорогая и применяется в редких случаях.

Следует избегать нагрева фотоэлементов в процессе работы, поскольку это снижает их эффективность. Потери можно уменьшить, если между панелями и поверхностями, на которых они установлены, оставлять свободное пространство. Воздушные потоки будут постоянно циркулировать и охлаждать работающие устройства.

Рекомендуется периодически мыть и протирать поверхности солнечных батарей. Чистота фотоэлементов способствует повышению коэффициента полезного действия, поскольку количество падающего ни них света поддерживается на должном уровне. В противном случае, из-за недостатка лучистой энергии, панели будут работать менее эффективно. Для установки фотоэлементов следует по возможности выбирать южную сторону, чтобы солнечные панели как можно меньше находились в тени.

Погодные условия нередко играют решающую роль. Чем больше солнечных дней в конкретном регионе, тем более высокой будет плотность излучения, попадающего на солнечные панели. В зимнее время года эффективность батарей снижается до 2-8 раз, поскольку добавляется фактор снега, попадающего на панели и закрывающего поверхности от солнца.

Принцип работы солнечных панелей

Подавляющее большинство солнечных панелей являются в физическом смысле фотоэлектрическими преобразователями. Электрогенерирующий эффект возникает в месте полупроводникового p-n перехода.


Именно кремниевые пластины составляют основу себестоимости солнечных панелей, но при их использовании в качестве круглосуточного источника электроэнергии придется дополнительно купить дорогостоящие аккумуляторные батареи

Панель состоит из двух кремниевых пластин с различными свойствами. Под действием света в одной из них возникает недостаток электронов, а в другой – их избыток. Каждая пластина имеет токоотводящие полоски из меди, которые подсоединяются к преобразователям напряжения.

Промышленная солнечная панель состоит из множества ламинированных фотоэлектрических ячеек, скрепленных между собой и закрепленных на гибкой или жесткой подложке.

КПД оборудования зависит во многом от чистоты кремния и ориентации его кристаллов. Именно эти параметры пытаются улучшить инженеры последние десятилетия. Основной проблемой при этом является высокая стоимость процессов, которые лежат в основе очищения кремния и расположения кристаллов в одном направлении на всей панели.

Ежегодно максимальные КПД различных солнечных панелей изменяются в большую сторону, потому что в исследования новых фотогальванических материалов вкладываются миллиарды долларов (+)

Полупроводники фотоэлектрических преобразователей могут изготавливаться не только из кремния, но и из других материалов – принцип работы батареи при этом не изменяется.

Список источников

  • sovet-ingenera.com
  • gameplaynet.ru
  • solar-energ.ru
  • mbhn.ru
  • www.beton-area.com
  • altenergiya.ru
  • electric-220.ru
  • econet.ru
  • solarb.ru
  • RealProducts.ru

Похожие статьи

Комментировать
0
42 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector