76f102ed9018374a2758341c10012e93.png

Кластерный анализ и метод горной кластеризации

СОДЕРЖАНИЕ
0
26 просмотров
08 февраля 2020

Определение типа грунта на глаз

Даже далекий от геологии человек, сможет отличить глину от песка. Но определить на глаз долю глины и песка в грунте уже не каждый сможет. Какой грунт перед вами суглинок или супесь? И каков процент чистой глины и ила в таком грунте?

Для начала обследуйте соседние жилые участки. Опыт создания фундамента соседей может дать полезную информацию. Покосившиеся заборы, деформации фундаментов при неглубоком их заложении и трещины в стенах таких домов говорят о пучинистых грунтах.

Потом нужно взять пробу грунта со своего участка, желательно ближе к месту будущего дома. Некоторые советуют сделать ямку, но узкую ямку глубокой не выроешь, да и что с ней потом делать?

Я предлагаю простой и очевидный вариант. Начните своё строительство с выкапывания ямы под септик.

У вас получится колодец с достаточной глубиной (не менее 3 метров, можно больше) и шириной (не менее 1 метра), который дает кучу преимуществ:

  • простор для взятия проб грунта с разной глубины;
  • визуальный осмотр сечения грунта;
  • возможность проверки грунта на прочность не вынимая грунт, в том числе и боковых стенок;
  • яму вам обратно закапывать не нужно.

Только установите в колодец в ближайшее время бетонные кольца, чтобы колодец не осыпался от дождей.

Определение грунта по внешнему виду

Состояние сухой породы

Глина Твёрдая в кусках, при ударе колется на отдельные комья. Комочки раздавливаются с большим трудом. Очень трудно растираются в порошок.
Суглинки Комья и куски сравнительно тверды, при ударе рассыпаются, образуя мелочь. Растертая на ладони масса не дает ощущения однородного порошка. Песка на ощупь при растирании мало. Комочки раздавливаются легко.
Супесь Сцепление между частицами слабое. Комья легко рассыпаются от давления рукой и при растирании чувствуется неоднородный порошок, в котором явно чувствуется присутствие песка. Супесь пылеватая при растирании напоминает сухую муку.
Песок Песчаная саморассыпающаяся масса. При растирании в ладонях ощущение песчаной массы, преобладают крупные песчаные частицы.

Состояние влажной породы

Глина Пластичное, липкое и мажущее Шар при сдавливании не образует трещин по краям. При раскатывании даёт прочный и длинный шнур диаметром
Суглинки Пластичное Шар при сдавливании образует лепёшку с трещинами по краям. Длинного шнура не образуется.
Супесь Слабо пластичное Образуется шар, который при лёгком надавливании рассыпается. Не скатывается в шнур или трудно скатывается и легко распадается на кусочки.
Песок При переувлажнении переходит в текучее состояние Не скатывается в шар и шнур.

Метод осветления воды

Метод определения типа грунта по скорости осветления воды за 1 минуту в пробирке (или стакане), в которую помещают щепотку почвы.

Грунт Осветляется
Песок полностью
Супесь до 50-70 мм
Супесь мелкая до 50-70 мм
Супесь пылеватая до 50-70 мм
Суглинистый до 10-20 мм
Суглинисто-пылеватый до 20-50 мм
Тяжелосуглинистый до 1-3 мм
Глина Осветляется до 1 мм или совсем не осветляется

Измеряемые характеристики грунтов

Для вычисления несущих характеристик грунта нам нужны измеряемые характеристики грунта. Вот некоторые из них.

Удельный вес грунта

Удельным весом грунта γ называется вес единицы объема грунта, измеряется в кН/м³.

Удельный вес грунта вычисляется через его плотность:

ρ ‑ плотность грунта, т/м³;g ‑ ускорение свободного падения, принимаемое равным 9,81 м/с².

Плотность сухого (скелета) грунта

Плотность сухого (скелета) грунта ρd ‑ природная плотность за вычитанием массы воды в порах, г/см³ или т/м³.

Устанавливается расчетом:

где W ‑ природная (естественная) весовая влажность грунта, %;ρ ‑ природная (естественная) весовая плотность грунта, г/см³ (т/м³)

Коэффициент пористости грунта

Коэффициент пористости – это отношение объема пустот к объему твердых частиц в долях единицы. Устанавливается расчётом:

где ρs и ρd – соответственно плотность частиц и плотность сухого (скелета) грунта, г/см³ (т/м³).

Принимаемая плотность частиц ρs (г/см³) для грунтов

песчаные грунты 2,66
супеси 2,7
суглинки 2,71
глины 2,74

Коэффициент пористости е, для песчаных грунтов разной плотности

Песок Гравелистый, крупный и средней крупности Мелкий Пылеватый
Плотный e ≤ 0,55 е ≤ 0,6 е ≤ 0,6
Средней плотности 0,55 0,6 0,6
Рыхлый е > 0,7 е > 0,75 е > 0,8

Степени влажности грунта

Степень влажности грунта Sr – отношение естественной (природной) влажности грунта W к влажности, соответствующей полному заполнению пор водой (без пузырьков воздуха):

где ρs – плотность частиц грунта (плотность скелета грунта), г/см³ (т/м³);е – коэффициент пористости грунта;ρw – плотность воды, принимаемая равной 1 г/см³ (т/м³);W – природная влажность грунта, выраженная в долях единицы.

Грунты по степени влажности

Грунт Степень влажности
Маловлажный 0 r ≤ 0,5
Влажный 0,5 r ≤ 0,8
Насыщенный водой 0,8 r ≤ 1

Пластичность грунта

Пластичность грунта – его способность деформироваться под действием внешнего давления без разрыва сплошности массы и сохранять приданную форму после прекращения деформирующего усилия.

Для установления способности грунта принимать пластичное состояние определяют влажность, характеризующую границы пластичного состояния грунта текучести и раскатывания.

Граница текучести WL характеризует влажность, при которой грунт из пластичного состояния переходит в полужидкое – текучее. При этой влажности связь между частицами нарушается благодаря наличию свободной воды, вследствие чего частицы грунта легко смещаются и разъединяются. В результате этого сцепление между частицами становится незначительным и грунт теряет свою устойчивость.

Граница раскатывания WP соответствует влажности, при которой грунт находится на границе перехода из твердого состояния в пластичное. При дальнейшем увеличении влажности (W > WP) грунт становится пластичным и начинает терять свою устойчивость под нагрузкой. Границу текучести и границу раскатывания называют также верхним и нижним пределами пластичности.

Определив влажность на границе текучести и границе раскатывания, вычисляют число пластичности грунта IР. Число пластичности представляет собой интервал влажности, в пределах которого грунт находится в пластичном состоянии, и определяется как разность между границей текучести и границей раскатывания грунта:

Чем больше число пластичности, тем более пластичен грунт. Минеральный и зерновой составы грунта, форма частиц и содержание глинистых минералов существенно влияют на границы пластичности и число пластичности.

Деление грунтов по числу пластичности и процентному содержанию песчаных частиц приведено в таблице.

Грунт Число пластичности Ip Содержание песчаных частиц (2-0,5мм) % по массе
Супесь
песчанистая 1 – 7 ≥ 50
пылеватая 1 – 7
Суглинок
лёгкий песчанистый 7 -12 ≥ 40
лёгкий пылеватый 7 -12
тяжёлый песчанистый 12- 17 ≥ 40
тяжёлый пылеватый 12- 17
Глина
лёгкая песчанистая 17 – 27 ≥ 40
лёгкая пылеватая 17 – 27
тяжёлая > 27 не регламентируется

Текучесть глинистых грунтов

Показать текучести IL выражается в долях единицы и используется для оценки состояния (консистенции) пылевато-глинистых грунтов.

Определяется расчетом из формулы:

где W – природная (естественная) влажность грунта;Wp – влажность на границе пластичности, в долях единицы;Ip – число пластичности.

Показатель текучести для грунтов разной плотности

Грунты Показатель текучести IL
Супесь
твердая IL ≤ 0
пластичная 0 ≤ IL ≤1
текучая IL >1
Суглинок и глина
твердые IL ≤ 0
полутвердые 0 ≤ IL ≤0,25
тугопластичные 0,25 L ≤0,5
мягкопластичные 0,5 L ≤0,75
текучепластичные 0,75 L ≤1
текучие IL > 1

Пучинистые и непучинистые основания

Сложным вопросом при самостоятельном строительстве становится определение, какие грунты имеются: пучинистые или непучинистые. Согласно ГОСТ 25100-2011 все основания делятся на пять групп по степени морозной пучинистости:

  • чрезмерно пучинистые;
  • сильнопучинистые;
  • среднепучинистые;
  • слабопучинистые;
  • непучинистые.

Последнюю группу можно назвать условной. Таких типов грунтов, в которых никогда не возникнет сил морозного пучения, практически нет. К категории безопасных оснований относятся только крупнообломочные породы и гранит, залегания которых на поверхности встречаются крайне редко.

Тип почвы не так сильно влияет на вероятность появления сил морозного пучения. Фактором возникновения этого явления является не грунт, а влага и отрицательные температуры. При соблюдении определенных условий, негативные явления могут возникнуть практически на любом участке.

На склонность грунта к появлению пучения влияют такие свойства как:

  • капиллярная активность;
  • способность к фильтрации.

По этим показателям самыми опасными типами почвы становятся глинистые. Сюда относят глину, суглинок и супесь. Эти почвы плохо фильтруют воду, задерживают ее и не пропускают в более глубокие слои. Жидкость остается в опасной близости от фундаментов.

Типы грунтов.

В тоже время глины отличаются высокой капиллярной активностью. Для сравнения, песчаные виды грунтов способны подтягивать воду примерно на 30 см. Свойство актуально при выпадении осадков или таянии снега. Влага распространяется лишь на 30 см от источника. В этом случае от морозного пучения фундаменты защищает отмостка стандартной метровой ширины. Глина же может подтягивать влагу на расстояние 1,5 м, для защиты от атмосферной влаги потребуется соорудить очень широкую отмостку для предотвращения повреждений.

При высоком уровне грунтовых вод даже условно непучинистые виды грунта (крупные и средние пески) могут привести к проблемам. Опасность возникновения морозного пучения в песках может появляться и при воздействии других факторов (например дом расположен на участке с уклоном, даже небольшим).

Среднее значение показателей сопротивления сдвигу лессовых пород (из работы Ю.М. Абелева).

Влажность w %

Угол внутреннего трения φ

tg φ

Сцепление С, кгс/см2

1

2

3

4

5

1,25-1,27

4

39°20′

0,819

0,70

7

33°50′

0,070

0,52

15

31°20′

0,611

0,32

19

30°10′

0,581

0,21

24

26°20′

0,495

0,06

28

26°00′

0,487

0,02

1,36-1,38

6

36°50′

0,74

0,80

1

35°00′

0,70

0,65

13

31°20′

0,61

0,46

15

29°00′

0,55

0,35

21

28°20′

0,54

0,20

25

26°30′

0,50

0,1

27

25°20′

0,47

0,05

1,42-1,44

7

34°10′

0,68

,96

12

28°50′

0,55

0,58

16

28°30′

0,54

0,46

18

28°20′

0,54

,4

22

27°0′

0,51

0,26

23

26°30′

0,50

0,20

26

25°50′

0,49

0,1

1,48-1,5

8

97°10′

0,75

1,57

1

33°00′

0,65

1,2

14

28°20′

0,54

0,80

19

26°30′

0,50

0,52

24

26°00′

0,49

0,20

1,58-1,55

14

36°10′

0,73

1,32

18

34°30′

0,69

1,00

22

31°20′

0,61

0,70

24

26°10′

0,49

0,42

26

25°40′

0,48

0,31

27

25°10′

0,47

0,26

6.
Водопроницаемость грунтов

Под водопроницаемостью или фильтрационной способностью грунтов подразумевается способность грунтов
поглощать и пропускать через себя воду.

По степени водопроницаемости грунты можно разделить на
три группы (по Ф.В. Саваренскому):

1. Водопроницаемые –
коэффициент фильтрации более 1 м/сутки.

2. Полупроницаемые – коэффициент фильтрации – 1-0,01 м/сутки.

3. Непроницаемые – коэффициент фильтрации менее 0,01
мсутки.

В соответствии с СН
449-72 по степени водопроницаемости грунты разделяются на дренирующие, к
которым относятся скальные и крупнообломочные грунты, пески гравелистые, крупные и средней крупности, а также пески мелкие,
удовлетворяющие одному из следующих условий: содержание частиц размером меньше 0,1 мм должно быть не более 15
%, в том числе размером менее 0,005 мм до 2 % по весу, коэффициент фильтрации
0,5 м/сутки*); недренирующие, к которым относятся глинистые грунты, а также пески
мелкие, не удовлетворяющие вышеуказанным
условиям

*) В
приборе Союздорнии.

Для расчетов дренажных устройств,
проектируемых для осушения грунтов в естественном
залегании, а также при притоке воды в отрываемые котлованы необходимо знать коэффициент
фильтрации грунтов.
При определении
коэффициента фильтрации грунтов наиболее надежными являются
данные опытных откачек. При отсутствии таких данных для ориентировочных
подсчетов можно использовать таблицы , , .
Необходимые для расчета дренажа значения гидродинамического градиента,
радиуса влияния дрены и уклона депрессионной кривой могут быть взяты
из таблиц , , .

Где можно класть пол на грунт

Класть пол допускается не на каждый грунт:

  • Основание должно быть хорошо уплотнено и выровнено. В противном случае со временем грунт осядет, стяжка пола повиснет в воздухе и со временем начнет разрушаться;
  • Основанием служат грунты, не подверженные пучению;
  • Не стоит укладывать пол на подвижные грунты.

Существует 2 вида пола по грунту:

  • Связанная плита стяжки. Жестко крепится к ленточному фундаменту, опирается на него. Пол не даст усадки, отделка не пострадает при незначительных изменениях грунтов;
  • Несвязанная. Стяжка не будет покрываться трещинами во время усадки, но при последующей эксплуатации отделка может повредиться из-за взаимного движения стен и пола.

При расчете учитывается временное и постоянное давление на всю поверхность пола. В первом случае нагрузка составит 150 кг/м2 (вес людей и мебели), во втором нагрузка зависит от используемых материалов.

Значения углов трения при срезе монолитных образцов и сдвиге плитки по плитке или при повторном сдвиге срезанного образца (по данным Г.А. Фисенко, М.Н. Гольдштейна и др.).

Сдвигаемое
тело

Контртело

Угол
трения при сдвиге плитки по плитке, или по трещине или повторный сдвиг,
град.

Угол
трения при срезе, φ град.

поверхность сдвига

гладкая

шероховатая

сухая

смочен.
водой

1

2

3

4

5

6

Гранит

Гранит

34

33

32

Гранит биотитовый

Гранит биотитовый

26,5 (19-31)

49

Сиениты и порфиры

Сиениты и порфиры

22-31

35

Сланцы хлоритовые зеленые

Сланцы хлоритовые

33

37

Сланцы филлитовые

Сланцы филлитовые

34

Сланец глинистый

Сланец глинистый

13

1

Известняк

Известняк

19-25

31-35

Известняк

Известняк

33

28

Известняк

Известняк

18-20

24-27

Мергель

Мергель

16

14

Песчаники

Песчаники

26-31

36

Алевролиты

Алевролиты

23-28

33

Аргиллиты

Аргиллиты

19-26

27-30

Серпентинит

Серпентинит (свежая плитка)

27,5-29

до
14,5

То же

То же (повторный сдвиг)

15,5

Бетон

Серпентинит

33

Бетон

Бентонитовая глина

23

33

Бетон

Бетон

28-33

17-33

35

Органоминеральные и органические грунты – торфы, заторфованные, сапропели

Торфяники распространены в Подмосковье, на востоке и северо-востоке. Они относятся к слабым грунтам, с присущей низкой прочностью.

Заторфованный грунт отличается от торфа процентным соотношением содержанием органического вещества – содержание больше 50% органики говорит о торфе, а содержание от 10 до 50% орган.остатков говорит о том, что перед нами заторфованный грунт, на основе песчаного грунта или глинистого.

Какие характеристики присущи торфам и заторфованным грунтам?

  • Высокая водонасыщенность
  • Сильная сжимаемость
  • Осадочность, медленно протекающая
  • Изменяемость характеристик под нагрузками
  • Подземные воды представляют собой весьма агрессивную среду по отношению к строительным конструкциям.

Помимо градации по количественному содержанию торфа органоминеральные и органические грунты делятся на:

  • Открытые , находящиеся близ поверхности;
  • Погребенные , располагающиеся в виде слоев или линз в глубине толщи;
  • Искусственно погребенные

Также важно значение степени разложения торфяных грунтов – степень разложения слагаемых его растительных остатков – гумуса. Очень важно оценить и характер залегания торфосодержащих пород:

Очень важно оценить и характер залегания торфосодержащих пород:

Напластование, имеющее в составе торф и заторфованные грунты – одно из наихудших оснований, так как приводит к дальнейшим деформациям и просадкам.

Сапропель – илосодержащая и одновременно торфосодержащая порода, с процентным содержанием органических веществ больше 10%. Коэффициент пористости сапропеля – в районе е> 3, характерна текучепластичная или текучая консистенция.

Нельзя возводить фундамент с непосредственным опиранием его на сильнозаторфованные грунты, торфы, сапропели и ил.

Мероприятия по укреплению неустойчивых оргиничексих и органикоминеральных грунтов описаны в СП 22.13330.2011 разделе 6.4 “Органоминеральные и органические грунты”.

В числе мероприятий замена нейстойчивого грунта средне- или крупнозернистым песком, гравием (что может быть очень дорого, например, в виду высокой мощности слоя торфа), а также можно прибегнуть к строительству свайного фундамента с опиранием свай на слой грунта с высокими прочностными характеристиками.  

Нельзя забывать, что в органических грунтах очень агрессивная среда для бетона и металла, поэтому нежелательно использовать стальные сваи, нужно позаботиться об изоляции свай для продлевания срока использования строения.

Мерзлые и вечномерзлые

Мерзлые грунты меют температуру ниже нуля, в том или ином виде содержат в составе льдистый частицы. После нахождения в мерзлом состоянии от 3 лет и больше такие грунты уже приобретают свойства вечномерзлых грунтов.

В замерзшем состоянии мерзлые и вечномерзлые грунты очень прочные, не подвержены деформациям, так как связующие их криогенные структуры повышают первоначальную прочность.

В процессе таяния полностью меняется структура и физико-механические свойства, происходят серьезные деформации. Некоторые грунты даже становятся жидкими после оттаявания. 

Основная особенность всего класса мерзлых грунтов – просадочность при таянии, когда происходит масштабное уменьшение объема грунта. Вечномерзлые грунты – достаточно проблемный тип грунта для проектирования и строительства.

Какой фундамент выбрать? Это можно определить только после определения всех необходимых расчетных деформационо-прочностных характеристик в процессе лабораторных испытаний. 

Первый вариант – сохранить структуру криогенных связей – мерзлое состояние как во время строительства, так и при дальнейшей эксплуатации. Сохранение вечной мерзлоты грунта сохраняется путем организации холодных первых этажей, проветриваемых холодных подполий с вентилируемыми продухами. В этом случае определяем мин.глубину заложения фундамента по СНиП 2.02.04-88:

Второй вариант – подготовка сооружения к неравномерной осадке. Можно заменить неустойчивый грунт на непосадочный песок или крупнообломочный грунт. Можно также опирать фундамент на более прочный слой, тогда можно использовать вечномерзлые грунты в оттаявшем состоянии или состоянии таяния. Это возможно лишь при условии наличия в массиве грунта прочных малодеформирующихся в процессе оттаивания грунтов.

Заглубление фундамента в этом случае осуществляется на основании расчетной глубины сезонного промерзания грунта df и уровню подземных вод, которые образуются в процессе оттаивания.

Необходимо застраивать площади на вечномерзлой земле только по одному из вариантов, а не так, что сосед выбирает холодный первый этаж, а вы – сваи.

Стоить отметить, что широко используемые в северном строительстве сваи тоже подвержены негативному воздействию: напорному давлению вод при промерзании грунта; хим. агрессивности воды оттаявшего слоя; появлению трещин из-за температурных деформаций.

Проведение анализа

Существует несколько способов определения состава почвы. Наиболее простой заключается в зрительном осмотре и взятии небольшого количества земли в руки. Определяется степень рассыпчатости, делаются попытки скатать грунт в комок или шнур

Обращается внимание на вязкость, слипаемость, наличие в смеси мелких частичек, пыли. Повышенное содержание влаги и глины приведет к тому, что при заморозках состояние почвы будет меняться

А так как зимы на территории Центральной Европы могут быть холодными и продолжительными, нужно постараться возвести фундамент здания с учетом возможных угроз и по всем правилам строительства.

Еще один хороший способ узнать консистенцию суглинка – это поместить небольшое его количество в емкость с водой. Желательно, чтобы сосуд был прозрачным. Жидкость тщательно размешивается. Через некоторое время (не ранее, чем через 15 минут) можно понаблюдать за образовавшимся осадком. На дне емкости останутся частицы песка, на поверхность же всплывет глина. По примерному количеству веществ на глаз определяют общий состав грунта.

Если необходимы точные данные, то можно воспользоваться услугами специальных химических лабораторий.

Песчаные грунты

  1. сухие песчаные грунты – обладают влажностью до 3 %, не уплотняются, нуждаются в сильном увлажнении, несущая способность максимальная.
  2. маловлажные – обладают влажностью 3-8 %, плохо уплотняются, нуждаются в доувлажнении, несущая способность близка к максимальной.
  3. влажные – обладают влажностью 8-15 %, хорошо уплотняются, несущая способность близка к максимальной.
  4. сильно влажные – обладают влажностью более 15 %; плохо уплотняются, нуждаются в просушке, степень влажности проверяется расчетным методом.
  5. водонасыщенные – при легком сжатии выделяют воду, при рыхлении переходят в текучее состояние.

Иные технологии

Есть еще один вариант, как избежать последствий строительства на суглинистой почве. Это так называемый «плавающий фундамент». Он состоит из максимально прочной цельной плиты. Используют также другой тип конструкции – решетку. Под них укладывают толстый слой песка или щебня. В итоге после заморозков грунт начинает подниматься, а вместе с ним приподнимается основание здания. Эта деформация неощутима, а крепкие толстые бетонные плиты не ломаются и не трескаются. Единственный недостаток такого способа в том, что на возведение потребуется довольно много времени и терпения.

Чтобы не опасаться в дальнейшем за свое жилище, можно воспользоваться технологией ТИСЭ. Ее любят за невысокую стоимость и возможность поставить фундамент на абсолютно любой почве. На большую глубину прорываются скважины, а в них устанавливают опоры

Важно произвести армирование системы. Тогда конструкция будет максимально прочной и способна выдержать на себе любое строение

Этот вариант идеально подходит для местности с грунтовыми водами у поверхности.

Определение пределов пластичности грунта

Важнейшим классификационным показателем глинистых грунтов является число пластичности. Понятно, что пределы пластичности в общем виде характеризуют тип структурных связей между отдельными элементами грунтовой системы. Если верхний предел пластичности (предел текучести) характеризует, по всей вероятности, переход структурных связей в грунте от ближних коагуляционных контактов к преимущественно дальним, то нижний, соответственно, переход ближних коагуляционных контактов к переходным (частично цементационным). Вопрос о типе микростроения грунтов при влажностях нижнего и верхнего пределов пластичности и, соответственно, типах контактов между отдельными частицами грунта прояснит применение растровой электронной микроскопии с применением 3D-томографа.

Главным преимуществом применения конуса Бойченко является определение пределов пластичности грунта одним прямым методом (одним усилием), что полностью исключает субъективность лабораторного определения данных показателей разными методами (методом погружения балансировочного конуса Васильева в грунт для предела текучести и методом раскатывания грунта в жгут для определения предела раскатывания).

Консистенция грунта при погружении конуса на 22,5 мм соответствует влажности верхнего предела пластичности, а на 4 мм – влажности нижнего предела пластичности. Одну пенетрацию следует проводить при влажности грунта, соответствующей погружению конуса от 3 до 6 мм, а вторую от 18 до 25 мм, т.к. зависимость между глубиной погружения конуса и влажностью грунта, построенная в логарифмическом масштабе, близка к линейной.

Грунт для определения нижнего предела увлажняют, если он находится в твердой или полутвердой консистенции, или подсушивают, если он слишком влажный. Затем укладывают слоями с послойным трамбованием в стандартное срезное кольцо диаметром 50 и высотой 20 мм. Кольцо устанавливают на основание пенетрометра, подводят конус к поверхности грунта, нажимают кнопку и дают возможность конусу внедрится в грунт в течение 5 секунд. Проводят 3–5 измерений. Глубина погружения конуса в грунт должна находиться в диапазоне от 3 до 6 мм. После проведения пенетрации грунт из кольца отбирают для определения влажности.

Для определения верхнего предела пластичности грунт протирают через сито 1 мм, увлажняют, тщательно перемешивают и укладывают в кольцо диаметром 50 мм и высотой 30 мм. Производят пенетрацию, глубина погружения конуса должна находиться в интервале глубин 18–25 мм. Аналогичным способом отбирают грунт для определения влажности.

После определения влажности грунта строится простая зависимость lgW=f(lgh) и по номограмме определяется верхний и нижний пределы пластичности грунта  lgWP=f(lg22,5) и lgWP=f(lg4) (рис. 4).

Рис. 4. Графический способ установления численных значений пределов пластичности по логарифмической сетке (по П.О. Бойченко ): W — влажность грунта, %; h — глубина погружения конуса Бойченко в грунт, мм; hA — глубина погружения конуса при нижнем пределе пластичности (4 мм); hB — глубина погружения конуса при верхнем пределе пластичности (22,5 мм).

Конус Бойченко незаменим при определении консистенции грунта в полевых условиях. Это, по существу, единственный объективный показатель состояния грунта при работе с водонасыщенными, тиксотропными и скрытотекучими грунтами, т.е. с теми грунтами, которые могут (и меняют) свое исходное состояние при транспортировке образца в стационарную грунтовую лабораторию. Применение конуса Бойченко снимает многие (если не все) вопросы исходного состояния грунта. Порой это единственный аргумент в бесконечных (и бессмысленных) спорах с проектировщиками, исповедующими устаревшие представления о механических свойствах грунта и пытающихся диктовать схемы определения прочностных свойств грунтов (КН и особенно КД-схемы проведения испытаний водонасыщенных глинистых и пылевато-глинистых грунтов) с учетом т.н. «бытового давления». Применение конуса Бойченко позволяет избавиться от совершенно фантастических чисел, которые выдают некоторые грунтовые испытательные лаборатории в своих отчетных материалах и которые в реальной природной обстановке просто отсутствует.

Коэффициенты фильтрации грунтов

Наименование пород

Коэффициент фильтрации, м/сутки

Авторы

1

2

3

4

Скальные
грунты

1

Слабо
трещиноваты: доломиты, мел,мергели,сланцы

5-20

Скабалланович, Седенко

2

Различные трещиноватые породы

20-60

-«-

3

Сильно трещиноватые породы

более 60-70

-«-

Галечниковыеи гравийные грунты

4

Галечник с песком

20-100

-«-

5

Галечник отсортировочный

более 100

-«-

6

Галечник
чистый

100-200

АгалинаМ.С.

7

Гравий
чистый

10-200

Абрамов С.К.

8

Гравий
с песком

75-15

-«-

9

Гравийно-галечниковые грунты со значительной примесью мелких частиц

20-60

Скабалланович, Седенко

Песчаные грунты

1

Песок пылеватый глинистый с преобладающей фракцией 0,01-0,05 мм

0,6-1,0

Богомолов Г.В.

11

Песок
пылеватый однородный с преобладающей
фракцией 0,01-0,05 мм

1,5-5,0

-«-

12

Песок
мелкозернистый глинистый с преобладающей фракцией 0,1-,25 мм

10-15

-«-

13

Песок
мелкозернистый однородный с преобладающей
фракцией 0,1-,25 мм

20-25

-«-

14

Песок среднезернистый глинистый с преобладающей
фракцией 0,25-0,5 мм

35-50

Богомолов Г.В.

15

Песок
среднезернистый однородный с преобладающей
фракцией 0,25-0,5 мм

35-40

-«-

16

Песок
крупнозернистый,слегка глинистый с преобладающей фракцией 0,5-1,0 мм

35-4

-«-

17

Песок
крупнозернистый однородный с преобладающей
фракцией 0,5-1,0 мм

60-75

-«-

Глинистые грунты

18

Глина

менее 0,01

Скабалланович, Седенко

19

Суглинок
тяжелый

0,05-0,01

Абрамов С.К.

20

Суглинок легкий и
средний

0,4-0,005

Абрамов С.К.

21

Супесь
плотная

22

Супесь
рыхлая

0,1-0,01

Скабалланович, Седенко

23

Супесь

1,0-0,4

Абрамович С.К.

Торф

24

Торф
мало разложившийся

4,5-1,0

Агалина М.С.

25

Торф
среднеразложившийся

1,0-0,15

-«-

26

Торф
сильно разложившийся

,15-0,01

-«-

Гранулометрический состав и пластичность

Классификация глинистых грунтов более детально:

Супесь

  • Содержание в супеси глинистых частиц около 10 %, остальной объем занимают песчаные частицы.
  • По своим характеристикам почти не отличается от песка. Бывает двух видов: легкая (в составе до 6%  глиняных частиц) и тяжелая (до 10%).
  • Растирая супесь во влажных ладонях, отчетливо заметны частицы песка.
  • Комки в сухом состоянии  имеют рассыпчатую структуру и легко крошатся при ударе.
  • Шар, сформированный из увлажненной супеси, при давлении легко рассыпается.
  • Отличается сравнительно низкой пористостью (0,5-0,7), по причине высокого содержания песка.
  • Несущая способность супеси имеет прямую зависимость от влажности глинистых грунтов.

Суглинок

В суглинке содержание глинистых частиц  может достигать 30% от общего веса. Как и в супеси, суглинок содержит большую часть песка, поэтому его можно назвать песчано-глинистым грунтом.

  • В сравнении с супесью, отличается большей связанностью, при определенных условиях может сохранять форму, не распадаясь на мелкие куски.
  • Тяжелые суглинки содержат до 30% глинистых частиц, а легкие до 20%.
  • Сухие куски сглинка не так тверды, как глина, при ударении рассыпаются на небольшие куски.
  • При увлажнении суглинок мало пластичен.
  • При растирании, в ладонях четко заметны песчаные частицы.
  • Комки легко раздавливаются.
  • Шар, сформированный из увлажненного суглинка, при надавливании превращается в лепешку, с характерными трещинами по краям.
  • Пористость суглинка несколько выше, чем супеси (0,5­–1).

Глина

В глине содержится более 30% глинистых частиц. Среди грунтов, она имеет наибольшую связанность.

  • В сухом состоянии глина твердая, при увлажнении становиться пластичной, вязкой, прилипает к пальцам.
  • При растирании в ладонях песчаных частичек практические не ощущается, комки раздавить довольно затруднительно.
  • При разрезании ножом пласта сырой глины, на гладком срезе не видно песчинок.
  • Скатанный шарик из увлажненной глины при надавливании превращается в лепешку без трещин.
  • Обладает наибольшей пористостью (до 1,1).

Список источников

  • files.stroyinf.ru
  • reconstruction.a1systems.su
  • ecology-of.ru
  • www.geoinfo.ru
  • www.syl.ru
  • stroim-domik.org
  • kalk.pro
  • GidFundament.ru
  • DomChtoNado.ru

Похожие статьи

Комментировать
0
26 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector