1c1dcfcea611b30c09c753f89becf16a.jpg

Нормативные и расчетные значения ветрового давления

СОДЕРЖАНИЕ
0
293 просмотров
14 февраля 2020

Определение нагрузки на стропила

Вес кровельного пирога

Чтобы узнать нагрузку на стропила нашего дома, следует вначале вычислить вес кровельного пирога.

Такой расчет сделать несложно, если знать общую площадь кровли и материалы, которые используются при создании этого самого пирога.

Суммируется масса каждого слоя и умножается на поправочный коэффициент.

Равняется этот коэффициент 1.1.

Вот типичный пример расчета веса кровельного пирога.

Допустим, вы приняли решение в качестве кровельного материала использовать ондулин.

И это верно!

Ведь ондулин является надежным и недорогим материалом. Именно по этим причинам он так популярен среди застройщиков.

Итак:

  1. Ондулин: его вес составляет 3 кг на 1 квадратный метр.
  2. Гидроизоляция. Используется полимерно-битумный материал. Один квадратный метр ее весит 5 кг.
  3. Слой утеплителя. Используется минеральная вата. Вес одного квадрата составляет 10 кг.
  4. Обрешетка, доски толщиной 2.5 см. Вес 15 кг.

Суммируем полученные данные: 3+5+10+15= 33 кг.

Теперь полученный результат необходимо умножить на 1.1.

Наш поправочный коэффициент.

Итоговая цифра получается 34.1 кг.

Это вес одного квадратного метра кровельного пирога.

Общая площадь кровли, например, 100 кв. метров.

Значит, весить она будет 341 кг.

Это очень мало.

Вот в этом и есть одно из преимуществ ондулина.

Рассчитываем снеговую нагрузку

Момент очень важный.

Потому, что во многих районах нашей зимой выпадает довольно приличное количество снега.

А это очень большой вес, который обязательно учитывают!

Хотя такая нагрузка является переменной.

Для расчета снеговой нагрузки используется карта снеговых нагрузок.

Определяете свой регион и выполняете расчет снеговой нагрузки по формуле

S = Sg х µ.

В этой формуле:

— S является искомой снеговой нагрузкой;

Учитывается вес снега на 1 кв. метр.

Этот показатель свой в каждом регионе.

Все зависит от месторасположения дома.

Для определения массы и используется карта.

— µ — это коэффициент поправки.

Зависит показатель этого коэффициента от угла наклона кровли.

Если угол наклона скатов составляет меньше 25 градусов, то коэффициент равняется 1.

При угле наклона 25 — 60 градусов коэффициент равняется 0.7.

Если угол наклона больше, чем 60 градусов, то коэффициент не учитывается.

Например, дом построен в Московской области.

Скаты имеют угол наклона 30 градусов.

Карта нам показывает, что дом располагается в 3 районе.

Масса снега на 1 кв. метр составляет 180 кг.

Выполняем расчет, не забывая про коэффициент поправки:

180 х 0,7= 126 килограмм на 1 кв. метр кровли.

Определение ветровых нагрузок

Для расчета нагрузок от ветра также используют специальную карту с разбивкой по зонам.

Используют такую формулу:

W=Wo х k.

Где

Wo – это нормативный показатель, определяемый по таблице.

В каждом регионе существуют свои таблицы ветров.

А показатель k – это поправочный коэффициент, который зависит от высоты дома и типа местности.

Альтернативная энергетика

Ветровая нагрузка может принести и пользу, например, преобразуя силу ветра в ветрогенераторах. Так, на скорости ветра V = 10 м/сек, при диаметре круга в 1 метр, ветряк обладает лопастями d = 1,13 м и выдаёт порядка 200–250 Вт полезной мощности. Электроплуг, потребляя такое количество энергии, сможет вспахать за один час порядка полсотки (50м²) земли на приусадебном участке.

Если применить большие размеры ветрогенератора, – до 3 метров, и средней скорости воздушного потока 5 м/сек, можно получить 1–1,5 кВт мощности, что полностью обеспечит небольшой загородный дом бесплатным электричеством. При внедрении так называемого «зелёного» тарифа, срок окупаемости оборудования сократится до 3–7 лет и, в дальнейшем, может приносить чистую прибыль.

Справка. «Зелёный» тариф – это выкуп государством излишнего электричества у населения, полученного при использовании альтернативных (возобновляемых) источников энергии.

Расчет в Excel ветровой нагрузки по СП 20.13330.2011.

В главе №11 СП 20.13330.2011 «Нагрузки и воздействия» /Актуализированная редакция СНиП 2.01.07-85* от 20.05.2011/ для профессионалов-строителей расписана методика определения ветровой нагрузки. Кроме нормального (перпендикулярного к поверхностям) давления она учитывает силу трения воздуха о неровности поверхностей, пульсации воздушного потока, аэродинамические колебания (флаттер, дивергенцию, галопирование), предусматривает проверку на отсутствие вихревого резонанса. Мы не будем далеко забираться в эти дебри и ограничимся укрупненным расчетом. Если вам необходим полный профессиональный расчет по действующим нормативам, то открывайте СП 20.13330.2011 – и считайте, разобраться в алгоритме не сложно. Дело в том, что расчеты для разных объектов весьма индивидуальны! Могу порекомендовать адрес в Интернете, где расположены ссылки на три бесплатные неплохие программы определения ветровых нагрузок: http://fordewind.org/wiki/doku.php?id=опр_ветра.

Перед началом работы необходимо найти и скачать из Интернета СП 20.13330.2011, включая все приложения.

В примечаниях к ячейкам столбца C с исходными данными поместим некоторые важные данные и ссылки на пунктыСП 20.13330.2011!!!

В файле Excel на листе «Расчет по СП 20.13330.2011» начинаем составлять программу, которая позволит определять расчетную ветровую нагрузку по второму алгоритму.

Исходные данные:

1. Вписываем коэффициент надежности по нагрузке γf

в ячейку D3: =1,4

2. Определяем тип местности, воспользовавшись примечанием к ячейке C4. Например, наша местность относится к типу B. Выбираем соответствующую строку с записью B в поле с выпадающим списком, расположенном поверх

ячейки D4: =ИНДЕКС(I5:I7;I2) =B

3. Открываем Приложение Ж в СП 20.13330.2011 и по карте «Районирование территории Российской Федерации по давлению ветра» определяем для интересующей нас местности номер ветрового района (карта есть в файле для скачивания). Например, для Санкт-Петербурга и Омска – это II ветровой район. Выбираем соответствующую строку с записью II в поле с выпадающим списком, расположенном поверх

ячейки D5: =ИНДЕКС(G5:G12;G2) =II

О том, как работает функция ИНДЕКС совместно с полем со списком можно прочитатьздесь.

4. Задаем эквивалентную высоту объекта над землей zeв м, пользуясь п.11.1.5 СП 20.13330.2011

в ячейке D6: =5

5. Аэродинамический коэффициент cвыбираем по приложению Д.1 СП 20.13330.2011, например, для плоской стенки и записываем

в ячейку D7: =1,3

cmax — с наветренной стороны

cmin > -3,4 — с подветренной стороны

Определение двух следующих коэффициентов, влияющих на значение пульсационной составляющей ветровой нагрузки, является очень непростой задачей, требующей расчета частот собственных колебаний объекта! Расчет этот для разных сооружений ведется по различным и очень непростым алгоритмам!!! Я укажу далее лишь примерные возможные диапазоны значений этих коэффициентов. Желающие разобраться досконально с частотами колебаний должны обратиться к другим источникам.

6. Коэффициент пространственной корреляции пульсаций давления ветраν определяем по п.11.1.11 СП 20.13330.2011 изаносим

в ячейку D8: =0,85

0,38 ν

7. Коэффициент динамичности ξопределяем по п.11.1.8 СП 20.13330.2011 и вписываем

в ячейку D9: =1,20

1,00 ≤ ξ

Результаты расчетов:

8. Нормативное значение ветрового давления wв кг/м2 считываем

в ячейке D11: =ИНДЕКС(H5:H12;G2) =30

9. Ориентировочную скорость ветра vв в м/с и км/ч определяем соответственно

в ячейке D12: =(D11*9,81*2/1,2929)^0,5 =21,3

vв = (w*g*2/γ)^0,5

и в ячейке D13: =D12/1000*60*60 =76,8

vв=vв/1000*60*60

10. Параметр k10 считываем

в ячейке D14: =ИНДЕКС(K5:K7;I2) =0,65

11. Параметр α считываем

в ячейке D15: =ИНДЕКС(J5:J7;I2) =0,20

12. Параметр ζ10 считываем

в ячейке D16: =ИНДЕКС(L5:L7;I2) =1,06

13. Коэффициент, учитывающий изменение ветрового давления по высоте k (ze) вычисляем

в ячейке D17: =D14*(D6/10)^(2*D15) =0,49

k (ze) = k10*(ze/10)^(2*α)

14. Коэффициент пульсации ветра ζ(ze) вычисляем

в ячейке D18: =D16*(D6/10)^(-D15) =1,22

ζ(ze)= ζ10*(ze/10)^(-α)

15. Нормативное значение средней составляющей ветровой нагрузки wm в кг/м2 рассчитываем

в ячейке D19: =D11*D17*D7 =19,2

wm= w* k (ze)*c

16. Нормативное значение пульсационной составляющей ветровой нагрузки wp вкг/м2 определяем

в ячейке D20: =D19*D9*D18*D8 =23,9

wp= wm*ξ*ζ(ze)*ν

17. Нормативное значение ветровой нагрузки w вкг/м2 вычисляем

в ячейке D21: =D19+D20 =43,1

w = wm+wp

18. Расчетную ветровую нагрузку W вкг/м2 с учетом коэффициента надежности рассчитываем

в ячейке D22: =D21*D3 =60,3

W= w*γf

Ссылки по теме

  • Правила технической эксплуатации электроустановок потребителей
    / Нормативный документ от 9 февраля 2007 г. в 02:14
  • Библия электрика
    / Нормативный документ от 14 января 2014 г. в 12:32
  • Справочник по электрическим сетям 0,4-35 кВ и 110-1150 кВ. Том 10 
    / Нормативный документ от 2 марта 2009 г. в 18:12
  • Кабышев А.В., Тарасов Е.В. Низковольтные автоматические выключатели
    / Нормативный документ от 1 октября 2019 г. в 09:22
  • Правила устройства воздушных линий электропередачи напряжением до 1 кВ с самонесущими изолированными проводами
    / Нормативный документ от 30 апреля 2008 г. в 15:00
  • Князевский Б.А. Трунковский Л.Е. Монтаж и эксплуатация промышленных электроустановок
    / Нормативный документ от 17 октября 2019 г. в 12:36
  • Зевин М.Б. Парини Е.П. Справочник молодого электромонтера
    / Нормативный документ от 14 октября 2019 г. в 16:45

Можно ли игнорировать ветровую нагрузку

Что, если вы будете строить здание и при этом не учитывать тип вашей местности на ветровую нагрузку? Здесь важно понимать одну важную истину – нагрузка ветра негативно воздействует на любой тип кровли. При этом абсолютно не важно, имеет кровля плоскую форму или какую-либо другую

Так, с увеличением угла ската крыши, увеличивается показатель нормальных сил, в то время как касательные уменьшаются. То есть, если все это подытожить, то крутой склон ската ветер может опрокинуть, а пологий уклон ската – унести и сорвать.

Из всего этого очевидно, при строительстве зданий, сооружении кровли и других конструкций крайне важно учитывать тип местности. Сегодня это как никогда просто

Например, существует специальная карта ветровых районов страны. Воспользовавшись ей, можно получить общее представление по этому вопросу.

Расчёт ветровой нагрузки на крышу

Основные повреждения на здании при сильных порывах ветра связаны с кровелькой конструкцией. По телевизору и в интернете приведено достаточно много наглядных примеров, как не только отдельные элементы кровли, но полностью вся крыша срывается под воздействием ветровой нагрузки.

При фронтальном направлении ветра происходит столкновение с фасадной частью здания и крышей. У вертикальной поверхности поток создаёт вихревые разнонаправленные векторы, — происходит деление на нижнюю, боковую и вертикальную составляющие.

  1. Нижнее направление – самое безопасное для здания, так как все усилия направлены в сторону фундамента, то есть одной из самой прочной и массивной части дома.
  2. Боковые составляющие воздействуют на фасадные части здания, окна, двери.
  3. Вертикальный поток направлен прямо на свес крыши и создаёт подъёмное усилие, стремящееся приподнять кровлю, сдвинуть её с места.

Воздушный поток, направленный на скат крыши, образует:

  • касательное движение, скользящее вдоль кровли, огибающее конёк и уходящее прочь, — эта сила стремится сдвинуть крышу с места;
  • перпендикулярное усилие, — нормаль, направленное внутрь кровли, создающее давление, могущее вдавить элементы крыши внутрь конструкции;
  • с подветренной стороны ската крыши создаётся обратная сила, способствующая созданию подъёмной силы, — как у крыла самолёта.

Сложив вместе все направления воздушных потоков, можно увидеть, что при высокой наклонной кровле образуются усилия, стремящиеся опрокинуть крышу.

Расчёт воздушной нагрузки на крышу, в зависимости от высоты её местонахождения над уровнем земли, определяется по формуле:

Wр = 0,7 * W * k * C.

  • W – нормативная величина усилия, создаваемого напором воздуха; определяется по картам в приложении к СП 20.133330.2011;
  • k – коэффициент, показывающий зависимость давления от высоты над срезом верхнего уровня земли (таблица 3);
  • C – аэродинамический коэффициент, учитывающий направление набегания воздушного потока на скат крыши (таблица 4 и 5).

Таблица 3. Коэффициент k для типов местности:

Высота над уровнем земли, метр Тип местности
A B C
≤ 5 0,75 0,5 0,4
10 1,25 0,65 0,4
20 1,25 0,85 0,55
40 1,5 1,1 0,8
60 1,7 1,3 1,0
80 1,85 1,45 1,15
100 2,0 1,6 1,25
150 2,25 1,9 1,55
200 2,45 2,1 1,8
250 2,65 2,3 2,0
300 2,75 2,5 2,2
350 2,75 2,75 2,35
≥ 480 2,75 2,75 2,75

Типы местности:

  • A – открытые пространства на побережьях морей, озёр, водохранилищ, пустыня, степь, лесостепь, тундра;
  • B – населённые пункты, лес, местность с равномерно распределёнными искусственными строениями с высотой больше 10 метров;
  • C – территория города с плотным расположением строительных сооружений высотой более 25 метров.

Таблица 4. Значение коэффициента С для двускатной кровли при векторе потока в скат крыши:

Угол наклона ά F G H I J
15° -0,9 -0,8 -0,3 -0,4 -1,0
0,2 0,2 0,2
30° -0,5 -0,5 -0,2 -0,4 -0,5
0,7 0,7 0,4
45° 0,7 0,7 0,6 -0,2 -0,3
60° 0,7 0,7 0,7 -0,2 -0,3
75° 0,8 0,8 0,8 -0,2 -0,3

Таблица 5. Значение коэффициента С для двускатной кровли при направлении потока во фронтон крыши:

Угол наклона ά F H G I
-1,8 -1,7 -0,7 -0,5
15° -1,3 -1,3 -0,6 -0,5
30° -1,1 -1,4 -0,8 -0,5
45° -1,1 -1,4 -0,9 -0,5
60° -1,1 -1,2 -0,8 -0,5
75° -1,1 -1,2 -0,8 -0,5

Положительная величина аэродинамического коэффициента означает, что ветер давит на поверхность. Отрицательные показатели – поток создаёт разрежение у поверхности кровли, иными словами – «отсос» воздушной подушки.

Пример расчёта

Дано:

  • здание находится на берегу большого внутреннего водоёма, местность относится к типу A;
  • кровля расположена на высоте 10 метров, то есть коэффициент равен 1,25;
  • преобладающие ветра направлены во фронтон крыши, отсюда аэродинамический показатель для крыши с наклоном ά = 30 равен C = -1,4;
  • норматив для района Поволжья W = 53 кгс/м².

Расчётное значение ветрового усилия составит:

Wр = 0,7 * 53 кгс/м² * 1,25 * (-1,4) = -64,925 кгс/м².

Отрицательное значение показывает, что имеется усилие, стремящееся оторвать кровлю от всего здания.

При общих размерах кровли S = 30 м², общее усилие составит:

P = 30 м² * (-64,925 кгс/м²) = -1947,75 кгс, то есть почти две тонны.

Какая нормативная документация регламентирует расчет нагрузок

До недавнего времени за расчет любых ограждающих, фасадных конструкций отвечал СНиП 2.01.07-85*. Он был написан без учета специфики работы навесных вентилируемых фасадов и светопрозрачных конструкций. Это создавало неудобства для проектировщиков и конструкторов, которые занимались данной проблематикой.

На смену морально устаревшему СНиП 2.01.07-85* пришёл свод правил нагрузок и воздействий СП 20.13330 2011. В нем прописаны этапы расчетов современных алюминиевых и стальных вентилируемых фасадных систем, светопрозрачных конструкций, планарного остекления. Расчет ветровой, снеговой и дождевой нагрузок необходимо проводить согласно СП 20.13330 2011.

Кроме свода правил нагрузок и воздействий расчет ветровой нагрузки определяется по ГОСТ 24756-81.

Для правильного и быстрого расчета ветровых и снеговых нагрузок применяются таблицы, в которых указаны нормативные показатели в зависимости от географической зоны:

Таблица определения снеговой нагрузки местности по районам на территории РФ

Снеговой район I II III IV V VI VII VIII
Вес снегового покрытия Sg (кгс/м2) 80 120 180 240 320 400 480 560

Карта зон снегового покрова территории РФ

Таблица определения ветровой нагрузки местности по районам на территории РФ

Ветровой район I II III IV V VI VII
Ветровая нагрузка Wo (кгс/м2) 17 23 30 38 48 60 73

Карта зон ветрового давления по территории РФ

Ветровая нагрузка – как образуется

Так, по мере своего передвижения, воздушный поток двигается. На своем пути он сталкивается с различными преградами, в частности, кровля, стены и другие конструкции дома. Как только воздушный поток сталкивается с подобными сооружениями, он раздваивается. Например, когда воздушная масса сталкивается со стеной, то часть нагрузки идет на низ здания, а вторая часть на карнизный свес кровли.

Когда воздушный поток сталкивается со скатом кровли, то происходит огибание ветра по касательной конек крыши. После этого поток подхватывает спокойные молекулы воздуха с подветренной стороны и уносит в сторону от здания. Таким образом, кровля сталкивается с нагрузкой четырех сил, которые способны сорвать ее или перевернуть:

  1. С наветренной стороны – 2 касательные.
  2. С подветренной стороны – подъемная сила.
  3. Вдавливающая. Ее воздействие происходит перпендикулярно скату кровли. Вследствие такой нагрузки, скат может сломаться или просто деформироваться.

Делаем расчет ветровой нагрузки на крышу

Учитывая, что чаще всего подвергается разрушению кровля, то рассмотрим важные нюансы того, как сделать правильный расчет ветровой нагрузки при строительстве кровли. Мы можем найти немало примеров того, что было, когда это не делалось. Кровля просто поднималась силой ветра и срывалась.

Итак, если направление ветра фронтальное, то осуществляется столкновение воздушной массы с фасадом здания и кровлей. На вертикальной поверхности поток воздушных масс образует завихрении, которые обладают разноплановыми векторами. То есть нагрузка происходит на вертикальную, боковую и нижнюю часть здания.

Каждая эта часть здания имеет определенные слабые и сильные места, рассмотрим их:

  1. Нижняя часть здания. При воздействии ветровой нагрузки на данную часть строения, а именно на фундамент, то никакого воздействия на здание не оказывается. Почему? Здесь располагается самая крепкая часть строения – фундамент. Поэтому нижнее направление самое безопасное.
  2. Боковое направление. В этом случае воздействие ветровой нагрузки приходится на фасад. Также здесь с ветром сталкиваются двери, окна и другие элементы строения. Можно сказать, что это средняя нагрузка из трех существующих.
  3. Вертикальное направление. В этом случае образуется самая серьезная нагрузка, так как воздействие воздушных масс осуществляется на свес кровли. В результате образуется подъемное воздействие, которое стремится поднять и сорвать кровлю. Как следствие, такое направление самое опасное и именно с ним нужно бороться.

Рассмотрим подробнее характер воздействия вертикального направления, а именно, на скат и кровлю. Воздушный поток образует следующие воздействия и усилия:

  • Касательные. Здесь подразумевается ветер, который скользит по крыше, огибает ее конек и уходит в сторону. Касательное воздействие стремится сдвинуть кровлю с места.
  • Перпендикулярные усилия. Это определение – нормаль. Под этим усилием подразумевается сила, которая направляется внутрь крыши. Вследствие этого создается определенное давление, которое способно вдавить кровлю внутрь здания.
  • Обратная сила. Этот вид воздействия воздушных масс образуется со стороны ската кровли. Данный вид ветровой нагрузки образует то же, что и крыло самолета – подъемная.

Важно! Итак, если подвести итог и сложить все направления ветрового потока, то можно прийти к выводу, что кровля, имеющая сильную наклонную, имеет большой риск к ее опрокидыванию.

Если же скат имеет пологую форму, то при воздействии серьезных воздушных масс конструкция с большой вероятностью приподнимется. Сила ветра попросту унесет ее в свободный полет. Итак, чтобы этого не допустить, для расчета будем использовать такую формулу:

Wр = 0,7 × W × k × C

Все эти значения имеют следующее объяснение:

C – это аэродинамический коэффициент. Здесь подразумевается воздействие потока ветра на скат кровли.

k – это зависимость высоты от земли к давлению.

W – это нормативная величина усилия. Эти усилия создаются напором воздушных масс

В этом случае крайне важно отталкиваться от показаний в СНИП и установленных норм в вашей местности

Итак, чтобы все это закрепить, предлагаем вам сделать приблизительные расчеты ветровой нагрузки на кровлю здания. В нашем случае дом будет находиться в местности, характеризующейся типу А. То есть это берег большого водоема. В этом здании крыша возвышается от уровня грунта на высоте 10 метров. Значит, в этом случае коэффициент применим 1,25. Что касается преобладающих ветров, то они идут по направлению к фронтону кровли. Как следствие, аэродинамический показатель равен С = -1,4. Это при наклоне ската 30 градусов. Для примера возьмем норматив Поволжья где W = 53 кгс/м2. Учитывая все это, делаем такие вычисления:

Wp = 0,7 × 53 кгс/м2 × 1,25 × -1,4 = -64,925 кгс/м2.

Почему здесь отрицательное значение? Оно указывает на то, что сила ветра стремится оторвать кровлю от дома. Если сделать вычисление этого значение на площадь здание, а она, пусть будет, 50 м2, то получаем следующее: Р = 50 м2 × -64,925 кгс/м2 = 3246,25 кгс/м2. То есть давление на срыв оказывается с нагрузкой больше трех тонн!

Итак, видно из всего этого, что определить ветровую нагрузку, в частности, на кровлю строения вполне реально и самостоятельно. Для этого следует знать ваш ветровой район, нормы и преобладающее направление ветра в вашей местности. Имея всю эту информацию, вы сможете учитывать крайне важные факторы при строительстве частного дома.

Расчет опорной площади

При выборе фундамента важно правильно определить минимально допустимую площадь его опоры на грунт. Ее можно вычислить по формуле S= γn · F / (γc · Rо), где:

  • γc – коэффициент эксплуатационных условий;
  • γn – коэффициент запаса надежности, принимаемый равным 1,2;
  • F – полная (суммарная) нагрузка на грунт.

Коэффициент эксплуатационных условий (условий работы) зависит от характера грунта и сооружения. Так, на глинистых почвах для кирпичных конструкций он принимается равным 1,0, а для деревянных – 1,1.

В случае песчаного грунта: γc равен 1,2 при больших и длинных строениях, жестких небольших домах; 1,3 – для любых маленьких построек; 1,4 – для больших не жестких домов.

Вес сооружения

Основу расчета составляет нагрузка, возникающая от веса всех элементов сооружения, включая сам фундамент. Конечно, подсчитать точно массу всех конструктивных деталей достаточно сложно, а потому принимаются средние значения удельного веса, отнесенного к единице площади поверхности.

Стеновые конструкции:

  • каркасные дома с утеплителем при толщине стены 15 см – 32-55 кг/м²;
  • бревенчатый и брусчатый сруб – 72-95 кг/м²;
  • кирпичная кладка толщиной 15 см – 210-260 кг/м²;
  • стены из железобетонных панелей толщиной 15 см – 305-360 кг/м².

Перекрытия:

  • чердак, деревянное перекрытие, пористый утеплитель – 75-100 кг/м²;
  • то же, но с плотным утеплителем – 140-190 кг/кв.м;
  • напольное перекрытие (цокольное), деревянные балки – 110-280 кг/м²;
  • перекрытие бетонными плитами – 500 кг/м².

Крыша:

  • металлическая кровля из листа – 22-30 кг/кв.м;
  • рубероид, толь – 30-52 кг/кв.м;
  • шифер – 40-54 кг/кв.м;
  • керамическая черепица – 60-75 кг/кв.м.

Расчет веса сооружения с учетом приведенных удельных весов сводится к определению площади соответствующего элемента и перемножении ее на данный показатель. В частности, для получения площади стен надо знать периметр дома и высоту стен. При расчете кровли необходимо учитывать угол ската.

Вес фундамента и снеговая нагрузка

Площадь опоры сооружения определяется на уровне подошвы, а значит, в суммарной нагрузке на грунт необходимо учитывать еще и вес фундамента. Методика расчета зависит от его типа:

  1. Ленточный фундамент. Прежде всего, определяется заглубление (Нф), которое должно быть ниже уровня промерзания. Например, при уровне 1,3 м нормальное заглубление составляет 1,7 м. Затем, определяется периметр ленты (Р), как 2(а+в), где а и в – длина и ширина дома, соответственно. Ширина ленты (bл) выбирается с учетом толщины стены. В среднем она составляет 0,5 м. Соответственно, объем ленточного фундамента V=P x bл х Нф. Умножив его на плотность армированного бетона (в среднем 2400 кг/м³), получим расчетный вес ленточного фундамента.
  2. Столбчатый фундамент. Расчет ведется на каждую опору. Вес одного столба определится, как произведение плотности бетона на объем заливки (V=SxНф, где S – площадь столба). Кроме того, обязательно учитывается вес ростверка, который рассчитывается аналогично ленточному фундаменту.
  3. Для определения веса монолитной бетонной плиты вычисляется ее объем (V=SxНф, где S – площадь плиты). Заглубление обычно составляет порядка 40-50 см.

В зимнее время нагрузка на грунт может значительно увеличиться за счет скопления снега на кровле. Принято считать, что при скате кровли с углом более 60 градусов, снег не накапливается, и снеговую нагрузку можно не учитывать.

При меньшем угле наклона крыши учитывать ее необходимо. Многолетние наблюдения дают такие параметры этой нагрузки:

  • северные районы – 180-195 кг/м²;
  • средняя полоса РФ – 95-105 кг/м²;
  • южные регионы – до 55 кг/м².

После определения всех указанных весовых параметров можно приступить к расчету минимальной площади подошвы по вышеприведенной формуле. Полная нагрузка на грунт (F) определится, как сумма веса стен, перекрытий, кровли, фундамента и снеговой нагрузки.

При расчете столбного и свайного фундамента суммарная нагрузка делится на количество опор, т.к. ростверк равномерно распределяет ее на опоры.

Что такое ветровая нагрузка

Переток воздушных масс вдоль поверхности земли происходит с разной скоростью. Натыкаясь на какое-либо препятствие, кинетическая энергия ветра преобразуется в давление, создавая ветровую нагрузку. Это усилие может ощутить любой человек, двигающийся навстречу потоку. Создаваемая нагрузка зависит от нескольких факторов:

  • скорость ветрового потока;
  • плотность воздушной струи,— при повышенной влажности, удельный вес воздуха становится больше, соответственно, возрастает величина переносимой энергии;
  • форма стационарного объекта.

В последнем случае на отдельные части строительного сооружения действуют силы, направленные в разные стороны, например:

  1. На вертикальную стену действует так называемое лобовое усилие, стремящееся сдвинуть объект с места. Противостоять этому усилию помогают несколько конструктивных решений:
  2. На крышу, кроме горизонтальных усилий (вдавливающих), действуют и вертикальные силы, образующиеся от разделения воздушного потока при ударе о стену. Вектор воздушного потока стремится поднять крышу, оторвать её от стен.
  3. Совокупность всех этих вихревых потоков создают ветровую нагрузку не только на крупные элементы здания, но распространяет свои влияния на все элементы строительного сооружения, — двери, окна, кровлю, водостоки, антенну, дымоход.

Мощность создаваемых усилий обычно пропорциональна квадрату расчётной величины скорости ветра.

Ветровая нагрузка на кровлю

Расчет ветровой нагрузки производится подобным образом. За основу берется нормативное значение ветровой нагрузки, действующее в данном регионе, которое умножается на поправочный коэффициент высоты здания:

W= Wo * k;

W — ветровая нагрузка на квадратный метр площади.

Wo — нормативная величина по региону.

k — поправочный коэффициент, учитывающий высоту над поверхностью земли.

Роза ветров

Имеются три группы значений :

  • Для открытых участков земной поверхности.
  • Для лесных массивов или городской застройки с высотой препятствий от 10 м.
  • Для городских поселений или местностей со сложным рельефом с высотой препятствий от 25 м.

Все нормативные значения, как и поправочные коэффициенты содержатся в таблицах СНиП и должны учитываться при расчетах нагрузок.

ОСТОРОЖНО!
При проведении расчетов следует учитывать независимость снеговых и ветровых нагрузок друг от друга, а также — одновременность их воздействия. Общая нагрузка на кровлю — это сумма обоих значений.. В заключение необходимо подчеркнуть большую величину и неравномерность нагрузок, создаваемых снегом и ветрами

Значения, сопоставимые с собственным весом крыши, нельзя игнорировать, такие величины слишком серьезны. Невозможность регулировать или исключать их присутствие заставляет реагировать путем увеличения прочности и правильного выбора угла наклона

В заключение необходимо подчеркнуть большую величину и неравномерность нагрузок, создаваемых снегом и ветрами. Значения, сопоставимые с собственным весом крыши, нельзя игнорировать, такие величины слишком серьезны. Невозможность регулировать или исключать их присутствие заставляет реагировать путем увеличения прочности и правильного выбора угла наклона.

Все расчеты должны опираться на СНиП, для уточнения или проверки результатов рекомендуется использовать онлайн-калькуляторы, которых много в сети. Лучшим способом станет применение нескольких калькуляторов с последующим сравнением полученных величин. Правильный расчет — основа долговременной и надежной службы кровли и всей постройки.

Пояснения к расчету односкатной крыши

Угол наклона Калькулятор учитывает указанный угол и определяет его правильность для выбранного кровельного материала. Изменение угла наклона осуществляется путем изменения высоты подъема крыши.
Площадь поверхности Общая площадь кровли со свесами.
Вес кровельного материала Вес кровельного материала для покрытия всей крыши.
Количество изоляционного материала Количество изоляционного материала (длина рулона 15 метров, ширина 1 метр, нахлест 10 см).
Нагрузка на стропильную систему Нагрузка кровельной системы с учетом ветровых и снеговых нагрузок выбранного региона.
Длина и количество стропил Показывает длину стропильной ноги и количество стропил с учетом заданного шага.
Сечение, вес и объем стропил Параметры определяются с учетом кровельного материала, площади поверхности, угла наклона и региональных нагрузок.
Количество и объем досок обрешетки В калькуляторе используется стандартная 6 метровая доска. Объем просчитывается в кубических метрах.

Можно ли избежать плачевных последствий ветровой нагрузки

Итак, чтобы избежать негативного разрушительного воздействия ветровой нагрузки на кровлю, следует придерживаться нескольких правил.

Совет №1

Крайне важно смонтировать правильный каркас кровли. Так, каркас в обязательном порядке должен иметь раскосы и подкосы

Чтобы усилить стропила, они должны быть связаны диагоналями. Кроме всего прочего, увеличивает прочность кровли и правильно смонтированная обрешетка.
Совет №2. Усилить ту крышу, которая уже построена. Например, это можно сделать, если обеспечить дополнительное крепление стропильной ноги. Достигается это следующим образом. Используя скрутку из вязальной проволоки необходимо скрутить нижний конец каждой стропильной ноги. Прикручивание осуществляется к ершу, который забивается в стену. Под ершом подразумевается металлический штырь из ковки, который на своей поверхности имеет насечки. Эти насечки обязательно направлены в противоположную сторону его выдергивания.
Совет №3. Правильный выбор кровельного материала. Так, существует группа кровельных материалов, которые нельзя назвать надежными. Профнастил отличается высокой парусностью. Этим показателям также характеризуется металлочерепица. Если говорить за натуральную черепицу, то она неплохая, но вот способ ее крепления не обеспечивает серьезную надежность при возникающих нагрузках. Каждый из этих материалов очень легко может сорвать ветер при большей его мощности. Если говорить за ондулин, то он не имеет такого недостатка. Особенность его монтажа включает в себя плотное прилегание к обрешетке. Для крепления используются специальные фирменные гвозди. Такому покрытию нестрашны сильные ветровые нагрузки.

Важно! Если кровля будет накрыта ондулином и на вашу местность будет надвигаться смерч, уносящий и срывающий все на своем пути, то листы из ондулина на причинят страшного вреда живим существам, например, при сравнении его с профнастилом или металлочерепицей.

Итак, мы рассмотрели простые способы того, как избежать негативного воздействия от ветровой нагрузки.

Как рассчитать ветровую нагрузку

Итак, как мы уже рассмотрели, что сила ветра способна оказывать разрушительное воздействие. В качестве давления выступает скорость ветра в момент его столкновения со зданием. Вот сила данного давления и является этой ветровой нагрузки. Расчеты выполняются для той цели, чтобы строить и проектировать безопасные строения и конструкции

При этом важно учитывать следующие факторы при проектировании, ведь скорость ветра может значительно изменяться исходя из его высоты от земли:

  • Чем выше здание, тем скорость ветра увеличивается.
  • Чем ближе ветер к земле, тем больше он становится непредсказуемым. Как следствие, он имеет прямое воздействие на предметы, находящиеся на земле.

Из-за того, что ветер от части не предсказуем, крайне сложно произвести точные расчеты ветровой нагрузки.

(Psf) = 00256 x V^2.

В этом случае V подразумевает скорость ветра, измеряющаяся в милях в час. Проще способ как сделать расчет, использовать уже готовую информацию в таблицах и пособиях по ветровой нагрузке именно вашего региона.

Также следует произвести вычисление коэффициента лобового сопротивления. Что это такое? Под лобовым сопротивлением подразумевается давление, с которым сталкивается дом/строение. Определяет давление – сопротивление. Коэффициент сопротивления определяется формой строения и другими конструктивными особенностями здания. Так, необходимы учитывать такие коэффициенты по сопротивлению при определении нагрузки ветра:

  1. 1.2 – это для цилиндрических труб сильно длинных.
  2. 0,8 – это для коротких цилиндрических труб, например, антенны и тому подобное.
  3. 2.0 – это для пластин длинных и плоских форм.
  4. 1.4 – это для пластин коротких и плоских форм, например, фасад.

Итак, теперь берем формулу, по которой и произведем расчет ветровой нагрузки:

F = A x P x Cd.

В этом случае:

  • Cd – коэффициент силы сопротивления.
  • P – давление, создаваемое ветром.
  • A – область.
  • F – сила.

Существует формула более современного образца:

F = A x P x Cd x Kz x Gh.

Здесь добавлены некоторые показатели, а именно:

  • Gh – коэффициент, указывающий на чувствительность той или иной конструкции по отношению к порыву ветру. Расчет чувствительности выполняется по такой формуле: 65+.60/(h/33)^(1/7). Под h здесь подразумевается высота той или иной постройки/конструкции.
  • Kz – это коэффициент экспозиции. Определить ее можно при помощи следующей формулы: [z/33]^(2/7). Здесь под z подразумевается высота постройки от земли, до ее середины.

Кроме всего прочего, при расчете еще стоит учитывать и тип местности. Существует 3 типа местности:

  1. А – это открытые участки, располагающиеся возле тундры, лесостепи, степи, пустынь, водохранилищ, озер, морей.
  2. В – это городская местность и лесные массивы. То есть та местность, которая на своем пути имеет препятствия высотой не больше 10 метров. При этом препятствия распределены равномерно.
  3. С – это городские районы, где постройки имеют высоту больше 25 метров.

Как определить, в какой местности проживаете вы? Можно смело считать, что ваша местность относится к одному из перечисленных типов, если с наветренной стороны сохраняется на протяженности 2 километров сооружения на определенной высоте, например, стабильно от 30 до 60 метров от земли.

Список источников

  • poweredhouse.ru
  • expert-dacha.pro
  • BazaFasada.ru
  • homehill.ru
  • al-vo.ru
  • www.elec.ru
  • ProRoofer.ru
  • DomaVlad.ru

Похожие статьи

Комментировать
0
293 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector