bfca822de83d1acc8591c623c42eb9f5.jpg

Удельная теплоемкость цемента

СОДЕРЖАНИЕ
0
154 просмотров
10 февраля 2020

Расчёт

Выполним расчёт CP воды и олова при следующих условиях:

  • m = 500 грамм;
  • t1 =24ºC и t2 = 80ºC – для воды;
  • t1 =20ºC и t2 =180ºC – для олова;
  • Q = 28 тыс. Дж.

Для начала определяем ΔT для воды и олова соответственно:

  • ΔТв = t2–t1 = 80–24 = 56ºC
  • ΔТо = t2–t1 = 180–20 =160ºC

Затем находим удельную теплоёмкость:

  1. с=Q/(m*ΔТв)= 28 тыс. Дж/(500 г *56ºC) = 28 тыс.Дж/(28 тыс.г*ºC) = 1 Дж/г*ºC.
  2. с=Q/(m*ΔТо)=28тыс.Дж/(500 гр*160ºC)=28 тыс.Дж/(80 тыс.г*ºC)=0,35 Дж/г*ºC.

Таким образом, удельная теплоемкость воды составила 1 Дж/г *ºC, а олова 0,35 Дж/г*ºC. Отсюда можно сделать вывод о том, что при равном значении подводимого тепла в 28 тыс. Дж олово нагрется быстрее воды, поскольку его теплоёмкость меньше.

Теплоёмкостью обладают не только газы, жидкости и твёрдые тела, но и продукты питания.

Таблица удельной теплоемкости пищевых продуктов

В таблице приведены значения средней удельной теплоемкости пищевых продуктов (овощей, фруктов, мяса, рыбы, хлеба, вина и т. д.) в диапазоне температуры 5…20°С и нормальном атмосферном давлении.

Таблица удельной теплоемкости продуктов питания
Продукты C, Дж/(кг·К)
Абрикосы 3770
Ананасы 3684
Апельсины 3730
Арбуз 3940
Баклажаны 3935
Брюква 3810
Ветчина 2140
Вино крепленое 3690
Вино сухое 3750
Виноград 3550
Вишня 3650
Говядина и баранина жирная 2930
Говядина и баранина маложирная 3520
Горох 3684
Грибы свежие 3894
Груши 3680
Дрожжи прессованные 1550…3516
Дыни 3850
Ежевика 3642
Земляника 3684
Зерно пшеничное 1465…1549
Кабачки 3900
Капуста 3940
Картофель 3430
Клубника 3810
Колбасы 1930…2810
Крыжовник 3890
Лимоны 3726
Лук 2638
Макароны не приготовленные 1662
Малина 3480
Мандарины 3770
Маргарин сливочный 2140…3182
Масло анисовое 1846
Масло мятное 2080
Масло сливочное 2890…3100
Масло сливочное топленое 2180
Мед 2300…2428
Молоко сухое 1715…2090
Морковь 3140
Мороженое (при -10С) 2175
Мука 1720
Огурцы 4060
Пастила 2090
Патока 2512…2700
Перец сладкий 3935
Печенье 2170
Помидоры 3980
Пряники 1800…1930
Редис 3970
Рыба жирная 2930
Рыба нежирная 3520
Салат зеленый 4061
Сало топленое 2510
Сахар кусковой 1340
Сахарный песок 720
Свекла 3340
Свинина жирная 260
Свинина нежирная 3010
Слива 3750
Сметана 3010
Смородина черная 3740
Сода 2256
Соль поваренная (2% влажности) 920
Спаржа 3935
Сыр жирный 2430
Творог 3180
Телятина жирная 3180
Телятина нежирная 3520
Тесто заварное 2910
Тыква 3977
Хлеб (корка) 1680
Хлеб (мякиш) 2800
Черешня 3770
Чернослив 3181
Чеснок 3140
Шоколад 2340…2970
Шпинат 3977
Яблоки 3760
Яйцо куриное 3180

Кроме таблиц удельной теплоемкости, вы также можете ознакомиться с подробнейшей таблицей плотности веществ и материалов, которая содержит данные по величине плотности более 500 веществ (металлов, пластика, резины, продуктов, стекла и др.).

  1. Исаченко В. П., Осипова В. А., Сукомел А. С. Теплопередача. Учебник для вузов, изд. 3-е, перераб. и доп. — М.: «Энергия», 1975.
  2. Тепловые свойства металлов и сплавов. Справочник. Лариков Л. Н., Юрченко Ю. Ф. — Киев: Наукова думка, 1985. — 439 с.
  3. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др. Под ред. И. С. Григорьева — М.: Энергоатомиздат, 1991. — 1232 с.
  4. Еремкин А. И., Королева Т. И. Тепловой режим зданий: Учебное пособие. — М.: Издательство ACB, 2000 — 368 с.
  5. Кириллов П. Л., Богословская Г. П. Тепломассобмен в ядерных энергетических установках: Учебник для вузов.
  6. Михеев М. А., Михеева И. М. Основы теплопередачи. Изд. 2-е, стереотип. М.: «Энергия», 1977. — 344 с. с ил.
  7. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  8. Франчук А. У. Таблицы теплотехнических показателей строительных материалов, М.: НИИ строительной физики, 1969 — 142 с.
  9. Добрынин В. М., Вендельштейн Б. Ю., Кожевников Д. А. Петрофизика: Учеб. для вузов. 2-ое изд. перераб. и доп. под редакцией доктора физико-математических наук Д. А. Кожевникова — М.: ФГУП Издательство «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2004. — 368 с., ил.
  10. В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2005. — 536 с.
  11. Енохович А. С. Справочник по физике. М.: «Просвещение», 1978. — 415 с. с ил.
  12. Строительная теплотехника СНиП II-3-79. Минстрой России — Москва 1995.
  13. Мустафаев Р. А. Теплофизические свойства углеводородов при высоких параметрах состояния. М.: Энергоатомиздат, 1991. — 312 с.
  14. Новиченок Н. Л., Шульман З. П. Теплофизические свойства полимеров. Минск, «Наука и техника» 1971. — 120 с.
  15. Шелудяк Ю. Е., Кашпоров Л. Я. и др. Теплофизические свойства компонентов горючих систем. М., 1992. — 184 с.

Виды кирпича и их показатели

Керамический материал используется печном деле.

Выпускается больше 10 разновидностей, различающихся технологией изготовления. Но чаще используются силикатный, керамический, облицовочный, огнеупорный и теплый. Стандартный керамический кирпич изготавливается из красной глины с примесями и обжигается. Его показатель тепла равен 700—900 Дж/ (кг град). Он считается довольно стойким к высоким и низким температурам. Иногда используется для выкладки печного отопления. Пористость и плотность его варьируется и влияет на коэффициент теплоемкости. Силикатный кирпич состоит из смеси песка, глины и добавок. Он бывает полно- и пустотелым, разных размеров и, следовательно, удельная теплоемкость его равна значениям от 754 до 837 Дж/ (кг град). Преимущество силикатной кирпичной кладки — хорошая звукоизоляция даже при выкладывании стены в один слой.

Облицовочный кирпич, используемый для фасадов зданий обладает довольно высокой плотностью и теплоемкостью в пределах 880 Дж/ (кг град). Огнеупорный кирпич, идеально подходит для кладки печи, потому что способен выдерживать температуру до 1500 градусов Цельсия. К этому подвиду принадлежат шамотный, карборундовый, магнезитовый и другие. И коэффициент теплоемкости (Дж/кг) отличается:

  • карборундовый — 700—850;
  • шамотный — 1000—1300.

Теплый кирпич — новинка на строительном рынке, который является модернизированным керамическим блоком, размеры и теплоизоляционные характеристики его намного превышают стандартный. Структура с большим количеством пустот помогает аккумулировать тепло и нагревать помещение. Потери тепла возможны только в швах кладки или перегородках.

Что такое удельный вес бетона?

При реставрационных работах, капитальном или точечном ремонте нужно не только приобрести необходимое количество материала, но и сделать расчет по характеристикам.

Такое понятие как удельный вес не используют, но все виды бетона отличаются по примененным компонентам. Хотя чаще всего в качестве наполнителя применяют щебень, гальку и другие материалы, но, даже используя одинаковое их количество, не удается сделать идентичный раствор, так как гранулы одного и того же элемента могут отличаться друг от друга (по форме и размеру). Чем они крупнее, тем больше поры в структуре бетона.

Но при проведении работ строителей интересует, сколько весит материал. Ведь по этому параметру и определяют специфику его применения, так как именно по этой величине рассчитывают конструкции с учетом местного климата и других условий. Например, при возведении фундамента, для определения его типа (с учетом почвы на участке), необходимо знать, сколько составляет удельная масса бетона, то же самое касаемо перекрытий, несущей конструкции и др.

Специалисты чаще применяют такое понятие, как «объемный вес», но данная величина не является постоянной. А вес данного строительного материала полностью зависит от тех компонентов, из которых его готовят. Также сюда нужно приплюсовать и воду, которая необходима для замеса.

Учитывая все эти ингредиенты, различают следующие типы бетона:

  1. тяжелый и особо тяжелый;легкий и особо легкий.

Рассмотрим каждый вид в отдельности.

Керамический

Исходя из технологии производства, кирпич классифицируется на керамическую и силикатную группы. При этом оба вида имеют значительные отличия по плотности материала, удельной теплоемкости и коэффициенту теплопроводности. Сырьем для изготовления керамического кирпича, еще его называют красным, выступает глина, в которую добавляют ряд компонентов. Сформированные сырые заготовки подвергаются обжигу в специальных печах. Показатель удельной теплоемкости может колебаться в пределах 0,7-0,9 кДж/(кг·K). Что касается средней плотности, то она обычно находится на уровне 1400 кг/м3.

Среди сильных сторон керамического кирпича можно выделить:

1. Гладкость поверхность. Это повышает его внешнюю эстетичность и удобство укладки. 2. Стойкость к морозу и влаге. В обычных условиях стены не нуждаются в дополнительной влаго- и термоизоляции. 3. Способность переносить высокие температуры. Это позволяет использовать керамический кирпич для возведения печей, мангалов, жаропрочных перегородок. 4. Плотность 700-2100 кг/м3. На эту характеристику непосредственно влияет наличие внутренних пор. По мере увеличения пористости материала уменьшается его плотность, и возрастают теплоизоляционные характеристики.

Нестационарные виды нагрузок

Из всех видов нестационарных нагрузок: непосредственно на узел (элемент) можно задать только изменяемый во времени тепловой поток на узел. Все остальные виды нестационарных нагрузок можно задать, только используя диалоговое окно «Формирование динамических загружений из статических».

1. Изменяемый во времени Тепловой поток

1.1. На узел

Есть три вида изменяемой во времени нагрузки на узел (аналогично прочностной задаче):

  • ломанная с произвольным шагом;
  • синусоидальная;
  • ломанная с равномерным шагом.

Величина задаваемой нагрузки определяется аналогично стационарному тепловому потоку, то есть значение чистого теплового потока умножается на площадь, через которую проходит этот поток.

1.2. На ребро пластины или на грань объемного КЭ

Чтобы задать нестационарный тепловой поток на ребро пластины или на грань объемного КЭ нужно задать стационарный тепловой поток в любом Загружении, кроме Загружения 4. Поскольку, Загружение 4 предназначено для задания демпфирующих нагрузок.

После этого, в окне «Динамика во времени из статических загружений» нужно сформировать Нестационарное загружение из соответствующего стационарного, путем задания закона изменения нагрузки во времени.

Для формирования теплового потока можно использовать следующие законы преобразования:

  • ломанный с произвольным шагом (1);
  • синусоидальный (2);
  • ломанный с равномерным шагом (4).

2. Изменяемый во времени Конвективный теплообмен.

Использовать такой тип нагрузки можно, если температура движущейся среды (к примеру, воздуха) может значительно изменяться во времени.

Как было сказано выше, задание нестационарного конвективного теплообмена происходит так же, как и задание теплового потока на ребро или на грань (то есть, через формирование динамических нагрузок из статических).

3. Изменяемый во времени Лучистый теплообмен

(или радиационный теплообмен)

Когда внешняя нагрузка равна:

– угловой коэффициент

– коэффициент поглощения (степень черноты поверхности конструкции)

– коэффициент излучения (степень излучения источника)

– постоянная Стефана Больцмана (равна 5,67*10-8Вт/м2К4)

Лучистый теплообмен происходит за счет того, что часть тепловой (внутренней) энергии тела (которая существует благодаря механическому колебанию элементарных частиц, из которых состоит тело) превращается в энергию излучения. Энергия излучения – это энергия электромагнитных колебаний с волнами различной длины. Возникают электромагнитные волны за счет колебания заряженных частиц (электронов или ионов), которые входят в состав тела. При попадании лучистой энергии на какое-либо тело, часть этой энергии поглощается, часть – проходит сквозь тело, а часть – отражается. Степень поглощения телом лучевой энергии учитывается через коэффициент . К примеру, для бетона этот коэффициент равен 0,75, а для абсолютно чёрного Тела – 1.

Угловой коэффициент Ф обычно принимается равным 1, он учитывает расположение источника излучения по отношению к поглотителю.

Можно подвести итоги. Тепло – это энергия, которая возникает за счет движения частиц, из которых состоит тело (атомов или молекул). Всего существует три основных вида передачи тепла: теплопроводность, конвекция и лучистый теплообмен.

1. Теплопроводность – когда тело проводит тепло путём хаотического движения частиц, от более нагретой части тела к менее нагретой.

2. Конвекция – вид теплообмена, который происходит за счет движения текучей среды (жидкости или газа) в окружении тела.

3. Лучистый теплообмен – когда тепло передается через электромагнитные волны.

Теплоемкость строительных материалов

Какими же должны быть стены частного дома, чтобы соответствовать строительным нормам? Ответ на этот вопрос имеет несколько нюансов. Чтобы с ними разобраться, будет приведен пример теплоемкости 2-х наиболее популярных строительных материалов: бетона и дерева. Теплоемкость бетона имеет значение 0,84 кДж/(кг*°C), а дерева — 2,3 кДж/(кг*°C).

На первый взгляд можно решить, что дерево — более теплоемкий материал, нежели бетон. Это действительно так, ведь древесина содержит практически в 3 раза больше тепловой энергии, нежели бетон. Для нагрева 1 кг дерева нужно потратить 2,3 кДж тепловой энергии, но при остывании оно также отдаст в пространство 2,3 кДж. При этом 1 кг бетонной конструкции способен аккумулировать и, соответственно, отдать только 0,84 кДж.

Но не стоит спешить с выводами. Например, нужно узнать, какую теплоемкость будет иметь 1 м2 бетонной и деревянной стены толщиной 30 см. Для этого сначала нужно посчитать вес таких конструкций. 1 м2 данной бетонной стены будет весить: 2300 кг/м3*0,3 м3 = 690 кг. 1 м2 деревянной стены будет весить: 500 кг/м3*0,3 м3 = 150 кг.

Таблица сравнения теплопроводности бревна с кирпичной кладкой.

Далее нужно посчитать, какое количество тепловой энергии будет содержаться в этих стенах при температуре 22°C. Для этого нужно теплоемкость умножить на температуру и вес материала:

  • для бетонной стены: 0,84*690*22 = 12751 кДж;
  • для деревянной конструкции: 2,3*150*22 = 7590 кДж.

Из полученного результата можно сделать вывод, что 1 м3 древесины будет практически в 2 раза меньше аккумулировать тепло, чем бетон. Промежуточным материалом по теплоемкости между бетоном и деревом является кирпичная кладка, в единице объема которой при тех же условиях будет содержаться 9199 кДж тепловой энергии. При этом газобетон, как строительный материал, будет содержать только 3326 кДж, что будет значительно меньше дерева. Однако на практике толщина деревянной конструкции может быть 15-20 см, когда газобетон можно уложить в несколько рядов, значительно увеличивая удельную теплоемкость стены.

Сводные таблицы теплоемкостей

Теплоемкость веществ
Вещество Агрегатное состояние  Удельная теплоемкость, Дж/(кг·К)
Золото  твердое 129 
Свинец твердое 130 
Иридий твердое 134 
Вольфрам твердое  134 
Платина твердое 134 
Ртуть жидкое  139 
Олово твердое 218
Серебро твердое 234 
Цинк твердое 380 
Латунь  твердое  380
Медь твердое  385 
Константан твердое 410 
Железо  твердое 444 
Сталь твердое 460
Высоколегированная сталь твердое 480 
Чугун твердое 500
Никель твердое 500 
Алмаз  твердое 502
Флинт (стекло) твердое 503 
Кронглас (стекло) твердое 670 
Кварцевое стекло твердое 703
Сера ромбическая  твердое 710
Кварц  твердое 750
Гранит твердое 770 
Фарфор твердое 800 
Цемент твердое 800 
Кальцит  твердое 800
Базальт твердое 820 
Песок твердое 835 
Графит твердое 840 
Кирпич твердое 840 
Оконное стекло твердое 840 
Асбест твердое  840 
Кокс (0…100°С) твердое 840 
Известь твердое 840 
Волокно минеральное твердое 840
Земля (сухая) твердое 840 
Мрамор твердое 840 
Соль поваренная  твердое 880 
Слюда  твердое 880 
Нефть жидкое 880
Глина  твердое 900 
Соль каменная  твердое 920
Асфальт твердое 920 
Кислород  газообразное 920 
Алюминий  твердое 930
Трихлорэтилен  жидкое 930 
Абсоцемент  твердое  960
Силикатный кирпич твердое 1000 
Полихлорвинил твердое 1000 
Хлороформ жидкое 1000
Воздух (сухой)  газообразное 1005 
Азот газообразное 1042 
Гипс  твердое  1090 
Бетон твердое 1130
Сахар-песок   1250 
Хлопок  твердое 1300 
Каменный уголь  твердое 1300
Бумага (сухая) твердое  1340
Серная кислота (100%) жидкое 1340
Сухой лед (твердый CO2) твердое 1380
Полистирол твердое 1380 
Полиуретан  твердое 1380
Резина (твердая) твердое 1420
Бензол жидкое 1420
Текстолит  твердое 1470
Солидол  твердое  1470
Целлюлоза  твердое 1500 
Кожа твердое 1510 
Бакелит твердое 1590 
Шерсть твердое 1700 
Машинное масло жидкое  1670 
Пробка твердое 1680 
Толуол твердое 1720 
Винилпласт  твердое 1760
Скипидар жидкое 1800 
Бериллий твердое 1824 
Керосин бытовой жидкое 1880
Пластмасса  твердое 1900
Соляная кислота (17%) жидкое 1930
Земля (влажная) твердое 2000
Вода (пар при 100°C) газообразное  2020 
Бензин жидкое 2050 
Вода (лед при 0°C)  твердое  2060 
Сгущенное молоко    2061
Деготь каменноугольный жидкое 2090
Ацетон  жидкое 2160 
Сало   2175
Парафин  жидкое 2200 
Древесноволокнистая плита твердое 2300 
Этиленгликоль  жидкое 2300 
Этанол (спирт)  жидкое 2390 
Дерево (дуб) твердое 2400 
Глицерин жидкое 2430
Метиловый спирт жидкое 2470 
Говядина жирная    2510
Патока   2650
Масло сливочное    2680
Дерево (пихта) твердое  2700
Свинина, баранина   2845
Печень   3010
Азотная кислота (100%) жидкое 3100
Яичный белок (куриный)   3140
Сыр    3140
Говядина постная   3220
Мясо птицы    3300
Картофель   3430
Тело человека   3470
Сметана   3550
Литий  твердое 3582 
Яблоки   3600
Колбаса   3600
Рыба постная   3600 
Апельсины, лимоны   3670
Сусло пивное  жидкое  3927 
Вода морская (6% соли) жидкое 3780 
Грибы    3900
Вода морская (3% соли)  жидкое 3930
Вода морская (0,5% соли) жидкое 4100 
Вода  жидкое 4183 
Нашатырный спирт  жидкое 4730 
Столярный клей  жидкое 4190
Гелий  газообразное 5190 
Водород  газообразное  14300 
Теплоемкость материалов
Название материала Название материала C, ккал/кг*С
ABS АБС, сополимер акрилонитрила, бутадиена и стирола 0,34
POM Полиоксиметилен 0,35
PMMA Полиметилметакрилат 0,35
Ionomer Иономеры 0,55
PA6/6.6/6.10 Полиамид 6/6.6/6.10 0,4
PA 11 Полиамид 11 0,58
PA 12 Полиамид 12 0,28
PC Поликарбонат 0,28
PU Полиуретан 0,45
PBT Полибутилентерефталат 0,3–0,5
PE Полиэтилен 0,55
PET Полиэтилентерефталат 0,3–0,5
PPO Полифениленоксид 0,4
PI Карбоксиметилцеллюлоза, полианионовая целлюлоза 0,27
PP Полипропилен 0,46
PS (GP) Полистирол 0,28
PSU Полисульфон 0,31
PCV Полихлорвинил 0,2
SAN (AS) Смолы, сополимеры на основе стирола и акрилонитрита 0,32

Виды кирпича

Для того чтобы ответить на вопрос: «как построить теплый дом из кирпича?», нужно выяснить какой лучше всего использовать его вид. Так как современный рынок предлагает огромный выбор данного строительного материала. Рассмотрим наиболее распространенные виды.

Силикатный

Наиболее высокую популярность и широкое распространение в строительстве на территории России имеют силикатные кирпичи. Данный вид изготавливается путем смешения извести и песка. Высокую распространённость этот материал получил благодаря широкой области применения в быту, а также из-за того, что цена на него довольно не высока.

Однако если обратиться к физическим величинам этого изделия, то тут не все так гладко.

Рассмотрим двойной силикатный кирпич М 150. Марка М 150 говорит о высокой прочности, так что он даже приближается к природному камню. Размеры составляют 250х120х138 мм.

Теплопроводность данного типа в среднем составляет 0,7 Вт/(м оС). Это достаточно низкий показатель, по сравнению с другими материалами. Поэтому теплые стены из кирпича такого типа скорей всего не получатся.

Немаловажным достоинством такого кирпича по сравнению с керамическим, являются звукоизоляционные свойства, которые очень благоприятно сказываются на строительстве стен ограждающих квартиры или разделяющих комнаты.

Керамический

Второе место по популярности строительных кирпичей обоснованно отдано керамическим. Для их производства различные смеси глин подвергают обжигу.

Данный вид делится на два типа:

  1. Строительный,
  2. Облицовочный.

Строительный кирпич используется для возведения фундаментов, стен домов, печей и т.д., а облицовочный для отделки зданий и помещений. Такой материал больше подходит для строительства своими руками, так как он значительно легче силикатного.

Теплопроводность керамического блока определяется коэффициентом теплопроводности и численно равна:

  • Полнотелый – 0,6 Вт/м* оС;
  • Пустотелый кирпич — 0,5 Вт/м* оС;
  • Щелевой – 0,38 Вт/м* оС.

Средняя теплоемкость кирпича составляет около 0,92 кДж.

Теплая керамика

Теплый кирпич — относительно новый строительный материал. В принципе, он является усовершенствованием обычного керамического блока.

Данный вид изделия значительно больше обычного, его размеры могут быть в 14 раз больше стандартных. Но это не очень сильно сказывается на общей массе конструкции.

Теплоизоляционные свойства практически в 2 раза лучше, по сравнению с керамическим кирпичом. Коэффициент теплопроводности приблизительно равен 0,15 Вт/м* оС.

Блок теплой керамики имеет много мелких пустот в виде вертикальных каналов. А как говорилось выше, чем больше воздуха в материале, тем выше теплоизоляционные свойства данного строй-материала. Теплопотери могут возникать в основном на внутренних перегородках или же в швах кладки.

Зависимость от температуры использования

На технические показатели кирпича большое влияние оказывает температурный режим:

  • Трепельный. При температуре от -20 до + 20 плотность меняется в пределах 700-1300 кг/м3. Показатель теплоемкости при этом находится на стабильном уровне 0,712 кДж/(кг·K).
  • Силикатный. Аналогичный температурный режим -20 — +20 градусов и плотность от 1000 до 2200 кг/м3 предусматривает возможность разной удельной теплоемкости 0,754-0,837 кДж/(кг·K).
  • Саманный. При идентичности температуры с предыдущим типом, демонстрирует стабильную теплоемкость 0,753 кДж/(кг·K).
  • Красный. Может применятся при температуре 0-100 градусов. Его плотность может колебаться от 1600-2070 кг/м3, а теплоемкость – от 0,849 до 0,872 кДж/(кг·K).
  • Желтый. Температурные колебания от -20 до +20 градусов и стабильная плотность 1817 кг/м3 дает такую же стабильную теплоемкость 0,728 кДж/(кг·K).
  • Строительный. При температуре +20 градусов и плотности 800-1500 кг/м3 теплоемкость находится на уровне 0,8 кДж/(кг·K).
  • Облицовочный. Тот же температурный режим +20, при плотности материла в 1800 кг/м3 определяет теплоемкость 0,88 кДж/(кг·K).

Динасовый. Эксплуатация в режиме повышенной температуры от +20 до +1500 и плотности 1500-1900 кг/м3 подразумевает последовательное возрастание теплоемкости от 0,842 до 1,243 кДж/(кг·K).

Карборундовый. По мере нагревания от +20 до +100 градусов материал плотностью 1000-1300 кг/м3 постепенно увеличивает свою теплоемкость от 0,7 до 0,841 кДж/(кг·K). Однако, если нагревание карборундового кирпича продолжить далее, то его теплоемкость начинает уменьшаться. При температуре +1000 градусов она будет равняться 0,779 кДж/(кг·K).

Магнезитовый. Материал плотностью 2700 кг/м3 при повышении температуры от +100 до +1500 градусов постепенно увеличивает свою теплоемкость 0,93-1,239 кДж/(кг·K).

Хромитовый. Нагревание изделия плотностью 3050 кг/м3 от +100 до +1000 градусов провоцирует постепенное возрастание его теплоемкости от 0,712 до 0,912 кДж/(кг·K).

Шамотный. Обладает плотностью 1850 кг/м3. При нагревании от +100 до +1500 градусов происходит увеличение теплоемкости материала с 0,833 до 1,251 кДж/(кг·K).

Подбирайте кирпичи правильно, в зависимости от поставленных задач на стройке.

Пример. Решение стационарной задачи теплопроводности

Рассмотрим пример расчёта теплопроводности внешней стены кирпичного дома.

Создаем задачу в 15м признаке схемы, который существует специально для решения задач теплопроводности. Рассмотрим участок стены, длиной 1 метр.

ШАГ 2. Создание элементов КОНВЕКЦИИ

Чтобы задать температуру воздуха, добавляем стержневые элементы на внутренней и внешней поверхности стены, и меняем их тип на КЭ №1555.

ШАГ 3. Характеристики материалов

Зададим соответствующие коэффициенты теплопроводности K для слоёв стены. Значения коэффициента теплопоглощения C и удельного веса R в статическом расчете не учитываются, поэтому можно их задать равными единицам.

Для элементов конвекции тоже создаём жесткость, и задаем там коэффициенты конвекции внутреннего и внешнего слоя:

ШАГ 4. Внешняя нагрузка

Через внешнюю нагрузку мы задаем температуру воздуха для элементов конвекции. Для этого, в разделе Нагрузки открываем конвективный теплообмен и задаём температуру внутри и снаружи стены.

Плотность горных пород и минералов

В таблице даны значения плотности горных пород и минералов при комнатной температуре в размерности кг/м3.

Представлены значения плотности следующих минералов и пород: агат алебастр (карбонатный и сульфатный), алмаз, альбит, андезит, анортит, асбест, асбестовый сланец, базальт, берилл, бештаунит, газовый уголь, галенит, гематит, гипс, глина, гранат, гранит, доломит, известняк, известь гашеная, кальцит, кварц (плавленый, прозрачный, непрозрачный), кокс, корунд, кремень, магнетит, малахит, мел, мергель, мрамор, наждак, опал, пемза, песчаник, пирит, полевой шпат, порфир, роговая обманка, серпантин, сланец, слюда (белая, обычная, черная), соль каменная, тальк, топаз, торф сухой, торианит, торит, трогерит, турмалин, туф лавовый, уголь (антрацит, битуминозный), уранит (кальциевый, медный), флюорит.

Плотность горных пород лежит в диапазоне от 500 до 9325 кг/м3. Следует отметить, что средняя плотность горных пород составляет величину около 3,3 кг/м3. Наиболее плотным из представленных в таблице горных пород является минерал торианит — его средняя плотность равна 9325 кг/м3. К породам с наименьшей плотностью относятся торф и пемза — их средняя плотность равна 500 кг/м3.

Примечание: Будьте внимательны! Плотность горных пород и минералов в таблице указана в степени 10-3. Не забудьте умножить на 1000. Например, плотность алмаза равна 3010-3520 кг/м3.

Виды материалов и их характеристики

Кирпич, выпускаемый на сегодняшний день во множестве видов, применяется при строительстве повсеместно. Ни один объект – крупный промышленный корпус, жилой многоквартирный или небольшой частный дом, не возводится без кирпичного основания. Строительство коттеджей, популярное и сравнительно недорогое, базируется исключительно на кирпичной кладке. Кирпич давно стал основным строительным материалом.

Это произошло благодаря его универсальным свойствам:

  • надежности и долговечности;
  • прочности;
  • экологичности;
  • отличным звуко- и шумоизоляционным характеристикам.

Выделяют следующие разновидности кирпича.

Красный. Изготавливается из обожженной глины и добавок. Отличается надежностью, долговечностью и морозостойкостью. Подходит для возведения стен и строительства фундамента. Обычно кладется в один или два ряда. Теплопроводность зависит от наличия зазоров в изделии.

Бывает полнотелый керамический брикет, огнеупорный и щелевой, с пустотами. Коэффициент проводимости тепла зависит от веса кирпича, вида и количества щелей в нем. Теплая керамика внешне красива, к тому же внутри имеет множество тонких зазоров, что делает ее очень теплой и потому идеальной для строительства. Если в керамическом изделии имеются также поры, снижающие вес, кирпич называется поризованным.

К недостаткам такого кирпича следует отнести то, что отдельные единицы малого размера и хрупкие. Поэтому теплая керамика подходит не для всех конструкций. К тому же это дорогостоящий материал.

Что касается огнеупорной керамики, то это так называемый шамотный кирпич – жженый брусок из глины с высоким показателем теплопроводности, почти таким же, как у обыкновенного полнотелого материала. Вместе с тем огнеупорность – ценное свойство, которое всегда учитывают при строительстве.

Из такого «печного» кирпича сооружают камины, он обладает эстетичным внешним видом, сохраняет тепло в доме благодаря высоким показателям теплопроводности, морозоустойчив, не поддается воздействию кислот и щелочей.

Теплоемкость удельная – это энергия, которая расходуется для нагревания одного килограмма материала на один градус. Этот показатель нужен для определения устойчивости к теплу стен здания, в особенности при низких температурах.

Теплопроводность кирпича и пеноблоков: особенности

Теплотехническая однородность — это показатель, который равен обратному отношению потока тепла, проходящему через конструкцию стены, к количеству тепла, проходящему через условную преграду и равному общей площади стены.

На самом деле и тот, и другой вариант вычисления является достаточно сложным процессом. Именно по этой причине если у вас нет опыта в данном вопросе, то лучше всего обратиться за помощью к специалисту, который сможет в точности произвести все расчеты.

Итак, подводя итоги, можно говорить о том, что физические величины очень важны при выборе строительного материала. Как вы смогли увидеть, разные типы кирпича, в зависимости от своих свойств, обладают рядом достоинств и недостатков. К примеру, если вы хотите возвести действительно теплое здание, то вам лучше всего отдать предпочтение теплому виду кирпича, у которого показатель теплоизоляции находится на максимальной отметке. Если же вы ограничены в деньгах, то оптимальным вариантом для вас станет покупка силикатного кирпича, который хоть и минимально сохраняет тепло, зато прекрасно избавляет помещение от посторонних звуков.

Список источников

  • help.liraland.ru
  • thermalinfo.ru
  • blog-potolok.ru
  • stroy-podskazka.ru
  • cp-h.ru
  • tvoykirpich.online
  • LivePosts.ru
  • kirpich.website
  • thewalls.ru

Похожие статьи

Комментировать
0
154 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector