8e3ace74e35c117e0c1c3356f5d7cf50.jpg

Теодолит. виды и работа. устройство и применение. как выбрать

СОДЕРЖАНИЕ
0
279 просмотров
14 февраля 2020

Устройство прибора

Маркировка теодолита «2Т30П» расшифровывается следующим образом:

  • «2» — инструмент второго поколения, которое имеет некоторые усовершенствования по сравнению с предыдущим;
  • «Т» — теодолит;
  • «30» — класс точности, определяющий погрешность в минутах, относит данный теодолит к техническим инструментам, обладающим малой точностью;
  • «П» — особое устройство зрительной трубы теодолита дает изображение прямого видения.

Зрительная труба имеет среднее значение увеличения – 20-кратное, изображение прямого типа формируется четкое и контрастное, обеспечивающее большее удобство выполнения работ и максимальный комфорт для зрения обслуживающего специалиста. Расположенный на зрительной трубе уровень позволяет выполнять с помощью инструмента простейшее нивелирование.

Конструкция оснащена шкаловым микроскопом, отсчет в котором ведется по размеченной шкале. Система вертикальной оси – повторительная.

Выполненный из сверхпрочного композитного материала корпус обеспечивает максимальную защиту механизмам теодолита от пылевых загрязнений, влаги, конденсата и прочих неприятных факторов. Для присоединения буссоли с целью определения магнитных азимутов имеется посадочный паз.

В стандартную комплектацию входят:

  • сам инструмент со съёмной подставкой;
  • набор юстировочных инструментов;
  • техническая документация: инструкция по эксплуатации теодолита 2Т30П, технический паспорт, свидетельство заводской поверки;
  • каркасный футляр, прочно соединяющийся с основанием прибора замками, и служащий для комфортной транспортировки и надёжного хранения.

Опционально в комплекте могут присутствовать:

  • оптический центрир;
  • буссоль;
  • геодезический штатив-треного;
  • фонарь подсветки микроскопа.

Ёмкий диапазон возможных для корректной работы теодолита температур, в также отсутствие в конструкции инструмента электронных элементов позволяет использовать эту модель в различных климатических зонах и при разных погодных условиях, даже критически низкие температуры не страшны надежному и согласованному устройству.

  • 1 — кремальера,
  • 2 — диоптрийное кольцо,
  • 3 — колпачок, под которым расположены исправительные винты сетки нитей,
  • 4 — оптический визир,
  • 5 — вертикальный круг,
  • 6 — колонка,
  • 7 — закрепительный винт лимба,
  • 8 — основание футляра,
  • 9 — становой винт,
  • 10 — исправительные винты уровня,
  • 11 — закрепительный винт алидады,
  • 12 — уровень,
  • 13 — закрепительный винт зрительной трубы,
  • 14 — зрительная труба,
  • 15 — наводящий винт зрительной трубы,
  • 16 — наводящий винт алидады,
  • 17 — подставка,
  • 18 — подъемные винты,
  • 19 — наводящий винт лимба,
  • 20 — окуляр микроскопа,
  • 21 — зеркало.

Устройство электронного тахеометра

_______Рассматривая устройство электронного тахеометра, следует отметить в нем три составные части:

  • оптическую;
  • механическую;
  • электронную.

_______Оптическая, механическая и даже электронные части устройства известны из оптико-механических и оптико-электронных теодолитов.

_______Отличительной особенностью электронных тахеометров считается наличие двух важных узлов:

  • светодальномера с инфракрасным светодиодом фазового и импульсного способа измерения расстояний и передачей их на жидкокристаллический дисплей;
  • электронно-цифрового вычислительного устройства с программным обеспечением, всевозможными режимами работы и панелью с дисплеем, позволяющем отображать все результаты на своем экране.

_______К системе ориентирования относятся геометрия осей взаимосвязанных элементов, механических узлов, уровней (горизонтального, круглого, электронного), отвесных приспособлений, компенсаторов и механизмы крепления.

_______К измерительной системе_______

_______Тахеометр состоит из двух основных частей:

  • неподвижной части (основание прибора);
  • подвижной алидадной части.

_______Неподвижная часть представляет собой подъемное трехопорное устройство (трегер), оснащенное круглым уровнем. Подвижная часть включает:

  • алидадную колонку;
  • пульт управления с экраном;
  • цилиндрический уровень;
  • зрительную трубу;
  • оптический визир;
  • аккумуляторную батарею;
  • закрепительные и наводящие микрометренные винты.

_______Внешний вид тахеометра Trimble М3 представлен на рис. 1 и 2

_______Рисунок 1 – Электронный тахеометр Trimble M3 – Сторона-1 (управляющая сторона)

_______Рисунок 2 – Электронный тахеометр Trimble M3 – Сторона-2

_______Состав электронного блока тахеометра (в алидадной части) включает:

  • угломерное устройство – кодовый теодолит с электронным сканированием горизонтальных и вертикальных кругов в определенных единицах (градусы, минуты, секунды);
  • вычислительное устройство;
  • записывающее устройство;
  • программное обеспечение;
  • жидкокристаллический экран;
  • кнопочный пульт управления.

_______Основные технические характеристики:

  • увеличение ×33;
  • поле зрения – 1˚20′;
  • закрепительные винты и наводящие винты;
  • угловые измерения: среднеквадратическая ошибка измерения угла 5” (для рассматриваемой модели Trimble M3 5”).

Правила эксплуатации

Для того чтобы выполнять высокоточные измерения, необходимо знать, как пользоваться теодолитом. От правильности выполненных измерений будет зависеть, насколько точно полученные цифры будут соответствовать действительности и насколько прочным и долговечным получится здание или другое сооружение.

Виды теодолитов.

Преимущества данного прибора:

  • он позволяет выполнять высокоточные угловые измерения, которые не зависят от погодных условий или географических особенностей местности;
  • работу можно проводить при температурах от -20 до +50 градусов, и это не будет влиять на точность выполненных измерений;
  • хорошо переносит трудные условия работы, поэтому теодолитом удобно пользоваться даже в экспедициях;
  • имеет небольшие размеры, удобен при транспортировке;
  • просто и быстро выставляется и юстирует свои характеристики.

Чтобы правильно работать с теодолитом, необходимо иметь хотя бы представление о нем и его устройстве.

Последовательность работы с теодолитом:

  • прибор устанавливают на треногу;
  • зрительную трубу наводят на две опорные точки;
  • прибор наводят на первую точку, фиксируют и измеряют вертикальную нить, потом отсчитывают по горизонтальному кругу и данные записывают. То же самое делают и со второй точкой;
  • зрительную трубу переводят через зенит и меняют положение круга;
  • если расхождения небольшие, то правильным будет среднее число;
  • показание лимба должно равняться нулю или быть близким к этому значению;
  • вращение алидады проводится до совпадения нулевых отметок на лимбе и микроскопе;
  • измерения проводят по кругу.

Измерение вертикального угла теодолитом.

Для того чтобы при помощи данного прибора правильно выполнять измерения, необходимо соблюдать правила его хранения. Он должен иметь свой кейс, в котором постоянно хранится, укладка и доставание теодолита из кейса должны выполняться только за подставки и рукоятки.

По завершении работы прибор необходимо упаковать, перед этим надо отпустить винты, что расположены на наблюдательной трубе и алидаде, после укладки в кейс они снова зажимаются. Правильная укладка теодолита позволяет легко закрыть крышку сейфа, если же она не закрывается, то он уложен неправильно.

Для установки штатива ослабляются винты, и таким образом ножки становятся «мягкими». После того как выполнится регулировка, все винты полностью зажимаются. После установки прибора на штатив выполняется его надежная фиксация при помощи станового винта.

Нельзя допускать, чтобы наводящие и подъемные винты были полностью зажаты или отпущены. Если надо перенести теодолит на небольшое расстояние, то его переносят вместе со штативом на плече. Если предполагается перемещение на большое расстояние, то прибор необходимо сложить в кейс.

При укладке в кейс необходимо использовать фиксирующие зажимы, тогда даже при случайном падении прибор не повредится.

Данный прибор относится к высокоточным, а использование в нем электроники предполагает исключение контакта с водой, поэтому, если необходимо работать в туман или дождь, теодолит надо закрывать пленкой. Если он намок, необходимо его хорошо вытереть и дать время полностью просохнуть.

Измерение углов теодолитом – изучаем марки приборов

В этом разделе мы хотим не только коснуться видов теодолита, но и его маркировки, ведь это в первую очередь бросается в глаза и вызывает некую растерянность при покупке прибора, а также при знакомстве с его работой. Итак, для начала разберемся, какими же приборами располагает промышленность с точки зрения их работы. Имеется механическое устройство, оптическое, лазерное и электронное. Первый тип – самый дешевый и простой, но имеет самую низкую точность, поэтому подойдет, скорее всего, только для изучения, а не для серьезных разработок.

Электронный удобен тем, что имеет устройство для считывания и обработки результатов, то есть геодезист должен только правильно его выставить, а остальное сделает машина. Но самым распространенным считается оптический теодолит, в нем приятно сочетаются цена и качество измерения, хоть он и не обладает мозгом, как электронный. А вот самым дорогим, но и более совершенным является лазерный, это самый точный прибор и удобный в использовании, однако имеет смысл для постоянных работ с высокими требованиями к качеству результатов.

Есть два принципиально отличающихся вида теодолитов по конструкции корпуса, а именно, подвижности лимба и алидады. В повторительных типах эти элементы можно закреплять поочередно и снимать показания методом последовательных повторений. А вот в простых этого делать нельзя, алидада и ось представляют там одно неподвижное целое, каждое измерение потребует отдельной настройки. Теперь напоследок рассмотрим маркировку инструмента, чтобы не путаться и не ожидать от измерений чего-то большего, чем они могут дать.

Марка теодолита включает совокупность цифр и букв, которые будет легко прочитать после нашего небольшого пояснения. В каждом имеется связка буквы «Т» и цифры, это – основа основ и показывает нам, что это действительно Теодолит, а цифры показывают погрешность измерения в секундах, чем они выше, тем больше погрешность. 1 маркирует высокоточные приборы, 2 и 5 – точные, 15 и 30 – технические. Цифра точности стоит после буквы «Т», а если какой-то номер стоит перед этой литерой, она обозначает поколение прибора, то есть его модификацию в заявленной категории предложенной марки.

Что такое нивелир

Нивелиром называется технический прибор, с помощью которого производят замеры высотных точек на рельефе либо в построенных сооружениях. Нивелир, так же как и теодолит, снабжен оптической трубой, установленной на подставку, и уровнями для выставления прибора на плоскости.

Работа нивелиром заключается в следующем. Устройство устанавливают в обзорной точке отсчета и из нее производят наблюдение за всеми остальными точками на плоскости. Для этого в наблюдаемой точке помещают инварную рейку, на которой имеется шкала. Если рельеф местности неровный, то в каждой отдельной точке показания по рейке будут свои. По разнице измерений между положением исходной и изучаемой точки определяется высота ее нахождения на плоскости.

Бывают лазерные и оптические нивелиры. Лазерные удобны в помещении, например для отделочных работ. Они отбивают на поверхности световые линии, по которым происходит ориентировка.

Определение расстояния теодолитом с помощью дальномерной рейки

С помощью теодолита можно определить и расстояние до точки взятия отсчётов, с погрешностью примерно в 10 см. Устанавливаем дальномерную рейку на точку, до которой хотим измерить расстояние. В визирной сетки теодолита есть 2 дальномерных штриха, расположенных сверху и снизу. Измерение расстояние производится просто. Считаем количество сантиметров от одного горизонтального дальномерного штриха до другого и умножаем полученное значение на дальномерный коэффициент трубы, который обычно равен 100.

Определение расстояния теодолитом при помощи дальномерной рейки по дальномерным нитям

На приведённом примере расстояния до рейки будет примерно 19,4 метра.

Принцип работы

Базовый принцип действия прибора заключается в наведении зрительной трубки на цель, после чего, с помощью геометрической проекции наблюдаемых через объектив горизонтальной и вертикальной осей, через отсчетное устройство по лимбу возможно измерить углы отклонения каждой оси.

Для того, чтобы работать с теодолитом, от оператора требуется определенный уровень знаний в области геометрии, механики и астрономической геодезии, а также практические навыки обращения с высокоточными устройствами. Существующие в промышленности электронные приборы во многом упрощают эксплуатацию, но и в принципах их работы желательно разобраться заранее.

В упрощенном виде, процедура работы с теодолитом, не зависимо от его типа, сводится к следующим действиям:

  1. Размещение штатива и выравнивание теодолита по горизонтальной поверхности, принимаемой за линию отсчета;
  2. Наведение поочередно на две условные отметки объекта, сначала «на глаз» с помощью трубки, а затем более точно наводящими винтами;
  3. Фиксация значений расположения точек вертикальной или горизонтальной нитью на визире. Двигаться при этом нужно по часовой стрелке;
  4. Проведение расчетов на основании данных, зафиксированных на горизонтальном или вертикальном лимбе при фокусе на каждой из точек. Таким образом, будет получено нужное значение угла между прямыми, на которых расположены искомые отметки.

Конструктивные характеристики

Теодолиты менялись со временем. Самые первые образцы имели в центре угломерного круга линейку на острие иглы, которая свободно на нем вращалась. На линейке имелись вырезы, также на них были натянутые нити, выступающие в роли отсчетных индексов. А центр угломерного круга устанавливался в вершину угла и крепко закреплялся.

При повороте линейки ее совмещали с первой стороной угла, далее брался отсчет по шкале угломерного круга. А потом линейка совмещалась с другой стороной угла, и брался второй отсчет. Разница двух значений соответствует значению угла. С целью совмещения линейки с разными частями угла использовали простые визиры.

В наши дни конструкция прибора значительно усовершенствовалась. Так, для совмещения линейки со сторонами угла используют трубу, которая двигается по высоте и азимуту. Для отсчета также используется специальное приспособление, его современная конструкция, которая в отличие от своих «предков» покрыта защитным кожухом из металла.

Для обеспечения плавных вращений подвижных элементов применяется осевая система, сами же движения регулируются посредством наводящих и зажимных винтов. Теодолит устанавливается на земле на штативе, а центр с отвесной линией совмещен посредством нитяного отвеса или оптического центрира.

Стороны угла, который подлежит измерению, проектируется на плоскость круга с помощью вертикальной движущейся плоскости (коллимационной). Она образуется через визирную ось трубы при ее вращении вокруг своей оси. Визирная ось является воображаемой линией, что проходит через центр нитевой сетки и оптический центр объектива.

Элементы прибора

Теодолит включает в себя такие составные элементы:

  • лимб — это угломерный круг, имеющий деления от 0 до 360 градусов, во время измерений играет роль рабочей меры;
  • алидада — подвижная часть конструкции, которая несет систему отсчитывания по кругу и удерживает визирную трубу;
  • зрительная труба — она прикрепляется подставками к алидадной части;
  • осевая система — помогает двигаться алидадной части и лимбу вокруг оси;
  • вертикальный круг — помогает измерять вертикальные углы;
  • подставка, оснащенная несколькими подъемными винтами;
  • наводящие и зажимные винты подвижных частей. Наводящие также называются микрометренными, а зажимные — закрепительными;
  • штатив и крючок для отвеса, вместе с площадкой под подставку и становым винтом;
  • винт перестановки круга;
  • уровни для вертикального и горизонтального круга;
  • винт фокусировки;
  • микроскопический окуляр для отсчетного прибора.

Вращения в теодолитах имеют три разновидности:

  • движение трубы;
  • лимба;
  • алидады.

Движение трубы и алидады при этом снабжено наводящим и зажимным винтом. Движение лимба может осуществляться разными путями. В теодолитах повторительного типа лимб двигается исключительно вместе с алидадой, а в некоторых моделях лимб двигается посредством двух винтов, которые работают только при зажатом алидадном винте. Есть также варианты, где лимб посредством специальной защелки скрепляется с алидадой, и их совместное вращение регулируется за счет винтов.

Особенности электронных моделей

Электронные теодолиты являются современными приборами для измерения углов. Их применение исключает ошибки при снятии отсчета, поскольку значения отображаются на специальном экране в виде цифр. Отображение осуществляется за счет того, что в горизонтальный и вертикальный круги встроены специальные датчики.

Работать с таким устройством намного проще, чем с обычным. Некоторые электронные модели оснащены дополнительными функциями для автоматизации работы. Однако простые оптические конструкции в некоторых ситуациях все же более предпочтительны:

  • они не нуждаются в подзарядке;
  • способны стабильно работать даже в экстремальных условиях.

А вот устройства электронного типа нельзя использовать в условиях низких температур (менее 30 градусов ниже нуля).

Нивелир VS теодолит: сходства и отличия

by echomeadmin

Как только человечество пришло к осознанию того, что время жития в пещерах подходит к своему завершению и начинается эпоха великого строительства, появилась и необходимость различных измерений. От самых простых и примитивных измерительных инструментов строительная эволюция в течение многих веков неуклонно двигалась вперед, придя к современным и постоянно совершенствующимся высокоточным приборам и устройствам.

Необходимость проведения замеров совершенно различной направленности создала большие группы измерительных инструментов, различных и по выполняемому функционалу, и по конструкции. Для строительства и ремонтно-бытовых работ на первом месте стоят геодезические многопрофильные приборы, каждый из которых выполняет свои, иногда весьма широкого спектра функции.

Наиболее распространенными среди специалистов-любителей и профессиональных мастеров являются нивелир и теодолит, имеющие как общие свойства, так и значительные различия. И тот, и другой геодезический прибор, имея определенные отличия в функциональных возможностях, используются для решения схожих задач, что часто вызывает путаницу среди конечных пользователей. Так чем отличается теодолит от нивелира?

Немного основ

Первый из рассматриваемых геодезических инструментов, широко используемый в строительных работах нивелир предназначен для определения превышения высот нескольких точек в уровне горизонтали – нивелирования. Заливка фундамента или уровня чистого пола, укладка кирпичных или блочных стен, поклейка обоев, укладка кафельной и керамической плитки – одни из немногих ситуаций, для успешного решения которых используется построение нивелиром горизонтальной и вертикальной направляющих.

Теодолит, помимо тех же горизонтальных и вертикальных линейных замеров, дает возможность выполнить и горизонтальные/вертикальные угловые измерения – например, контроль отклонения от вертикали стены и определение деформации зданий, разметку профиля дорожного покрытия и т.д.

Одного семейства, но разные

Первым и существенным отличием этих двух приборов будет являться более широкая возможность использования и универсальность теодолита: позволяя выполнять большее количество линейных и угловых измерений, теодолит наиболее предпочтителен при разноплановых работах и стройках. Нивелир имеет более узкую специализацию, несколько ограничивающую сферу его использования.

Вполне естественными при разных выполняемых функциях выглядят и конструктивные отличия:

  • ключевыми компонентами нивелира является визирная труба и цилиндрический уровень;
  • теодолит состоит из лимба и алидады, образующих горизонтальный круг, и вертикального круга (вертикального лимба). Двухканальная система отсчета инструмента основана на использовании микроскопа с определенной ценой деления, дополнительная (угловая) ось измерений – главное отличие теодолита от нивелира.

Принципиально разное конструктивное исполнение влечет за собой и особенности использования:

  • для определения расстояния до нужной точки поверхности с помощью нивелира дополнительно необходимо применение нивелирующей рейки (для оптического типа приборов);
  • теодолит вполне самодостаточен: по горизонтальному лимбу отсчитывают угол направления, а по закрепленному на горизонтальной оси трубы вертикальному кругу определяют угол наклона.
  • теодолит любого типа можно использовать на двух уровнях – горизонтальном и вертикальном, в то время как нивелир – только на горизонтальном.
  • И нивелиры, и теодолиты могут быть как оптическими, так и лазерными. Оба типа приборов, благодаря зрительным трубам, обеспечивают обратное изображение.

Принимая во внимание отличительные особенности нивелира от теодолита  для проведения сложных геодезических и ремонтно-строительных работ было бы удобно иметь для определенных условий измерений оба инструмента. При выборе между ними в качестве единственного следует учитывать конкретные задачи, выполнение которых предполагается

Основные технические требования к линейным измерениям

Любые геодезические работы должны быть выполнены с четким соблюдением всех правил, дабы обеспечить получение самых точных результатов измерений. Основные требования к данной процедуре изложены в инструкции по топографической съемке в масштабах 1:5000, 1:2000, 1:1000 и 1:500, а также ряда других нормативных документов.

В зависимости от предельной относительной погрешности  длина теодолитного хода должна соотносится со следующими показателями, приведенными в табл.1.

Таблица 1.

Буровая установка № скважины Литологический тип Коэф. крепости Размер отдельности, м Скорость фактическая, м/c
DM LP 6,0 4,0 2,0 6,0 3,0
СБШ 3,0 2,0 1,0 3,6 1,5
1:1000 1,8 1,2 0,6 1,5 1,5
1:500 0,9 0,6 0,3

\(m_{s}\) – среднеквадратическая ошибка измеренных расстояний.

Показатели предельно допустимых длин между узловой точкой и исходной уменьшается на 30%, а также должны быть:

– больше 20 м, но меньше 350 м на застроенных участках;

– свыше 40 м и не более 350 м.

Аналогичные требования (табл. 2) есть и к висячим теодолитным ходам:

Таблица 2.

Масштаб Местность
Застроенная Не застроенная
1:5000 350 500
1:2000 200 300
1:1000 150 200
1:500 100 150

Измерение длин необходимо проводить в обе стороны и высчитать их среднее значение, а точность приборов должна быть не менее 30”. Допустимое отклонение при центрировании – не более 3 мм.

Приведение в рабочее положение электронного тахеометра.

_______ Этап 1 – Центрирование.

  1. После установки инструмента на штатив, посмотрите через оптический центрир и совместите нити с точкой станции. Для этого вращайте подъемные винты пока центральная марка визирных нитей не будет точно над изображением точки станции
  2. Пока вы поддерживаете платформу штатива одной рукой, ослабляйте винты на ножках штатива и настраивайте длину ножек, пока воздушный пузырек не окажется в центре круглого уровня.
  3. Затяните винтами ножки штатива.
  4. Используйте цилиндрический уровень для установки инструмента по уровню. Посмотрите через оптический центрир и убедитесь, что изображение точки станции находится в центре марки визирных нитей.
  5. Если точка станции ушла из центра, выполните следующее:
    • Если точка станции незначительно ушла из центра, ослабьте становой винт штатива и затем отцентрируйте инструмент на штативе. Используйте только прямое перемещение инструмента к центру. Не вращайте его.
    • Когда инструмент отцентрирован, снова затяните становой винт. Если смещение точки станции велико, повторите центрирование со 2 этапа.

_______ Этап 2 – Установка уровней

  1. Поворачивайте алидаду, пока цилиндрический уровень не будет параллелен с любой парой из уровневых винтов (B и C).
  2. Используйте подъемные винты B и C для перемещения пузырька в центр уровня.
  3. Поверните алидаду примерно на 90°.
  4. Используйте уровневый винт A для перемещения пузырька в центр уровня.
  5. Повторите шаги с 1 по 5 для центрирования пузырька в обеих положениях.
  6. Поверните алидаду на 180°.
  7. Если пузырек в цилиндрическом уровне остался в центре, значит, инструмент выставлен по уровню. Если пузырек сместился из центра, настройте цилиндрический уровень.

_______ Этап 3 – Настройка зрительной трубы

_______ Для наведения инструмента:

  1. Настройте визир:
    • Нацельте зрительную трубу на пустое место, такое как небо или лист бумаги.
    • Смотря через окуляр, вращайте визирное кольцо пока пересечение визирных нитей четко не сфокусируется.
  2. Устраните параллакс:
    • Нацельте зрительную трубу на изображение цели.
    • Вращайте кольцо фокусировки, изображение цели четко не сфокусируется на перекрестии визирных нитей.
    • Подвиньте вертикально ваш глаз вбок, чтобы проверит, где изображение цели сдвигается относительно перекрестия визирных нитей. Если изображение цели не сдвигается, значит, параллакс отсутствует.
    • Если изображение цели сдвинулось, вращайте кольцо фокусировки зрительной трубы. Затем повторите действия, начиная с шага 3.
  3. Вращайте микрометрический винт. Окончательный поворот микрометрического винта должен быть в направлении по часовой стрелке, чтобы точно выровнять цель с перекрестием визирных нитей.

_______ Этап 4 – Установка режима измерения

_______ Электронный тахеометр Trimble M3 имеет два режима измерения: Отражательный режим (Призма) и режим Прямого отражения (DR). Тахеометр Trimble M3 имеет класс лазера 3R в безотражательном режиме, и класс лазера 1 в отражательном режиме. Не выполняйте наблюдения на призму в безотражательном режиме.

_______ Выбор режима измерений в зависимости от цели измерения.

Измерения с призменным отражателем. Поскольку электронный тахеометр Trimble M3 очень чувствителен, множественные отражения от поверхности призмы иногда могут причинить значительную потерю точности.

_______Для поддержания точности ваших измерений необходимо соблюдать следующие правила:

  • Не используйте призму с трещинами, пыльной поверхностью или надколотым центром. Trimble рекомендует, чтобы вы использовали призму с тонкими гранями, как показано ниже.
  • При измерениях на короткие расстояния, слегка наклоняйте призму, чтобы дальномер мог игнорировать излишние отражения от поверхности призмы.

_______ Фокусирование зрительной трубы

_______ Фокусирование сетки нитей. Навести на яркую равномерно окрашенную поверхность, и поворачивать окуляр зрительной трубы до тех пор, пока сетка нитей не станет четкой.

_______ Фокусирование на объект. Навести на объект, и поворачивать фокусировочное кольцо зрительной трубы до тех пор, пока объект не станет четким.

Список источников

  • chonemuzhik.ru
  • tokar.guru
  • 2lzz.ru
  • www.syl.ru
  • remoskop.ru
  • echome.ru
  • geo-s.sibstrin.ru
  • geomix.ru
  • masterinstrumenta.ru

Похожие статьи

Комментировать
0
279 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector