45bdff7a7b881fbfc3ec1236405c9036.jpg

Стабилизатор напряжения

СОДЕРЖАНИЕ
0
48 просмотров
14 февраля 2020

Пример стабилизации напряжения на LM317

Допустим надо подать на микросхему 12 вольт и отрегулировать его до 5. Исходя из формулы, приведенной выше, для того, чтобы LM317 выдал 5 вольт и выступал в роли регулятора напряжения, значение R2 должно быть 720 Ом.

Соберите указанную выше схему. Затем с помощью мультиметра проверьте выходное напряжение, поместив его щупы на конденсатор емкостью 1 мкФ. Если схема собрана правильно, то на её выходе будет около 5 вольт.

Теперь замените резистор R2 и установите на его место номинал со значением 1,5 кОм. Теперь на выходе должно быть около 10 В. Это преимущество этих миросхем. Вы можете настроить их на любое напряжение в пределах диапазона, указанного в его характеристиках.

Принцип работы

Соберем простой стабилизатор напряжения используя LM317 согласно схеме.

Подключим на вход Vin источник постоянного питания. Как уже было написано ранее, к этим контактам надо подать входное напряжение, которое микросхема затем понизит в зависимости от нагрузки. Оно должно быть больше, чем на выходе.

Допустим используя эту схему надо получить 5 В нагрузке. Следовательно, на вход Vin надо подать больше чем 5 вольт. Как правило, если микросхема LM317, не является регулятором с малым падением надо, чтобы входное напряжение примерно на 2 вольта было выше выходного. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Контакт Adj позволяет отрегулировать напряжение на выходе до уровня, который мы хотим.Рассчитаем, какое значение сопротивления R2 даст на выходе устройства 5 вольт. Используя формулу для выходного напряжения можно узнать значение сопротивления R2.

Так как сопротивление R1 равно 240 Ом, а выходное напряжение равно 5 В, то R2 согласно формуле будет равно 720 Ом.  Таким образом, при значении R2 =720 Ом, LM317 будет выдавать 5 В, при подаче на её вход более 5 Вольт.

Драйвер тока

Драйвер тока (LED Driver) поддерживает ток и напряжение в цепи нагрузки в независимости от поданного на него постоянного питания. Известно, что светодиод является полупроводниковым прибором, который следует запитать током, указанным в характеристиках светодиода.

Используя схему стабилизации как показано в DataSheet  можно собрать на LM317 простую схему драйвера тока.

Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. У маломощных светодиодов ток потребления составляет порядка 20 мА или 0,02 А. Для подбора необходимого сопротивления используют формулу, где Iout это ток на выходе микросхемы, необходимый для питания светодиодов.

Используя формулу, получаем значение номинала резистора с сопротивлением 62.5 Ома. Для избежания перегрева микросхемы подбирают необходимую мощности резистора по формуле.

Собрав схему и подав питание, получают простейший драйвер стабилизации тока для светодиодов.  Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.

Номинал необходимого резистора R1, можно подобрать, используя обычный подстроечный проволочный резистор на сопротивление 0.5 кОм. Для этого сначала проверяют его сопротивление между среднем и любым из крайних выводов. С помощью мультиметра, вращая регулирующий стержень,  добиваемся значения сопротивления 500 Ом, чтобы не сжечь подключенный светодиод при включении.

Затем подключают в схему со светодиодом. Чтобывыбрать подходящий номинал резистора, после подачи питания изменяют сопротивление подстроечного резистора до требуемого тока светодиода.

Онлайн-калькулятор

Для расчета параметров радиоэлементов в схемах с LM317 в сети интернет существует множество онлайн-калькуляторов:

  • для расчета резистора R2, при известном выходном напряжении и сопротивлении резистора R1;
  • для вычисления напряжения на выходе стабилизатора, при известном сопротивлении двух резисторов (R1 и R2);
  • для расчета сопротивления и мощности резистора, при известном значении силы тока на выходе микросхемы и др.

Ремонт релейных приборов

Ремонт Ресанта аппаратов часто связан с заменой реле. В устройствах от этого производителя их обычно 4 или 5. Восстановление аппаратов такого типа усугубляется тем, что в маломощных стабилизаторах корпус реле изготовлен из непрозрачного пластика. Поэтому нельзя визуально определить, в каком состоянии находятся его контакты. Также маломощные реле неразборные, с них нельзя просто так снять крышку.

Дополнительная информация. То, что реле щёлкает как положено, ещё не означает, что оно исправно. Механическая часть этого компонента может быть в порядки, но он всё равно не будет выполнять свою функцию из-за нагара на контактах.

Второй неблагоприятный фактор заключается в том, что большую часть времени входное напряжение стабилизатора находится в узком диапазоне. Поэтому в основном срабатывают одни и те же реле. Чаще всего они располагаются рядом и подвержены наиболее частым отказам.

Неисправное реле может выдать себя оплавлением корпуса, характерным запахом гари или изменением цвета. Технически его можно попытаться разобрать, почистить контакты и отремонтировать. Но нет гарантий, что после ремонта оно долго прослужит. Поэтому при таких неисправностях реле лучше всего заменить аналогичным или более мощным.

Контакты реле

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 – феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка – феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.


Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 – автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.

Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Схемы подобного рода выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения. Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 – электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.

Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Схема подключения стабилизатора напряжения в сеть 220 В

Подключение стабилизатора напряжения производится при обесточенной сети. Это основное требование техники безопасности. Для его выполнения отключается вводной автомат, расположенный в распределительном шкафу, после чего необходимо окончательно удостоверяются в отсутствии напряжения, используя указатель.

В большинстве случаев включение стабилизатора происходит сразу за счетчиком, на вводе в помещение, перед нагрузкой. Тип включения – последовательный, в разрыв фазного провода. Довольно часто производители электронной продукции обозначают структурную схему стабилизатора на поверхность корпуса.

В стабилизаторе напряжения имеется, как правило, три контакта для подключения:

  • – фаза – “вход”;
  • – фаза – “выход”;
  • – нуль.

Фазный провод от вводного автомата подключается на “вход” стабилизатора. Затем к “выходу” подсоединяется фазный провод нагрузки. К нулевому контакту стабилизатора подсоединяется нулевой провод сети без разрыва.

Чтобы подключить нулевой провод нужно сначала подсоединить его к стабилизатору, а затем к общему нулевому проводу сети (с помощью клеммных соединителей (колодок) или обычной скрутки).

Что делать если на корпусе стабилизатора четыре контакта для подключения?

В некоторых случаях схема стабилизатора напряжения выполнена таким образом, что для подключения его к сети используется не три, а четыре контакта:

  • – фаза – “вход”;
  • – нуль – “вход”;
  • – фаза – “выход”;
  • – нуль – “выход”.

В этом случае схема стабилизатора напряжения, по которой он включается в сеть, выполняется следующим образом: фазный и нулевой провод от вводного автомата (электрощита) подсоединяются к соответствующим контактам «вход» на защитном устройстве, а фазный и нулевой провод нагрузки соединяется с контактами «выход».

После монтажа следует тщательно проверить правильность подключения проводов. Перед первым включением устройства (подачей напряжения на вход) необходимо отключить всю нагрузку от его выхода (освещение, вытащить вилки электроприборов с розеток и т.п.).

Включив стабилизатор необходимо проконтролировать его работу, он должен стабильно и нормально работать без постороннего шума, потрескивания и т.п.

Для надежной работы рекомендуется проводить следующую ежегодную профилактическую процедуру – подтягивание винтовых и болтовых соединений. Также данная мера предотвратит возможность пожара или повреждения изоляции, причиной которых может быть плохо затянутый или ненадежный контакт.

Некоторые маломощные стабилизаторы напряжение (P

Устройство, которому необходимо обеспечить защиту, подключается к стабилизатору через такую розетку. Таким образом, данные защитные устройства являются переходным элементом между электрической сетью и нагрузкой, обеспечивающим защиту нагрузки от аномального напряжения.

Виды стабилизаторов и их выбор

Чтобы обезопасить свою домашнюю сеть от скачков напряжения, обеспечить стабильную работу сложных электронных устройств как при низких, так и при высоких его значениях, обычно подключают стабилизатор. Бытовые стабилизаторы напряжения бывают трёх типов – электромеханический, электрорелейный и электронный. Электромеханический состоит из двигателя и автотрансформатора, электрорелейный – из автотрансформатора и системы реле, а электронный выполнен на основе высоковольтных полупроводниковых приборов – симисторов.

Электромеханический стабилизатор самый дешёвый. Однако, он предназначен для работы только в положительном диапазоне температур, и имеет некоторое запаздывание при больших и частых скачках напряжения. Кроме того, он издаёт незначительный шум при работе, раз в год его надо очищать и смазывать, а устанавливать следует только на строго горизонтальную поверхность. Электрорелейный чуть дороже, может устанавливаться на стену, но и он потребует время от времени смены реле, особенно при частых бросках напряжения. Переключения реле издают характерный щелчок, что отчётливо слышно и не всегда приятно. Самый дорогой – электронный, на основе симисторов. Такой прибор имеет плавную регулировку, даже при самых частых и больших бросках напряжения в сети, хорошую защиту, и практически не требует обслуживания.

Подключение стабилизатора в трехфазной сети

Конструкции трехфазных стабилизаторов отличаются поблочным исполнением, где для каждого блока предусмотрен собственный клеммник. При подключении должно соблюдаться равномерное распределение однофазных потребителей. Как правило, они подключаются к разным блокам стабилизатора, чтобы создаваемая в нем нагрузка была симметричной.

Стабилизаторы, питающиеся от трехфазного напряжения, защищаются от аварий и прочих негативных последствий с помощью автоматических выключателей. Такие схемы чаще всего используются в промышленности, а в частных домах используются очень редко, по причине высокой стоимости трехфазного стабилизатора. При выходе его из строя, все потребители будут получать электроэнергию напрямую из сети со скачками и перепадами.

Поэтому для бытовых условий существует схема, по которой трехфазные потребители подключаются через однофазные стабилизаторы. Они потребляют существенно меньшую мощность по сравнению с промышленными аналогами, поэтому для того чтобы нормализовать сетевые параметры, можно воспользоваться тремя одинаковыми стабилизаторами напряжения с нагрузкой, предусмотренной для однофазной сети.

Разводка рабочего нуля осуществляется к входным клеммам каждого стабилизатора. Параллельное подключение от выходов всех трех устройств, образует шину рабочего нуля. От этой шины рабочие нули направляются к каждому потребителю. У всех стабилизаторов имеются входные фазные клеммы, соединяющиеся с соответствующими клеммами защитных устройств. Выходные клеммы соединяются с группой автоматов, через которые питание поступает к потребителям. Конкретная схема подключения зависит от особенностей электропроводки, типа стабилизатора и других технических условий.

Походы к выбору стабилизатора

Перечень параметров, по которым выбирают стабилизаторы, обязательно включает:

  • мощность нагрузки или отдаваемый номинальный ток;
  • выходное напряжение;
  • тип сети (однофазная – трехфазная).

Большую помощь окажет информация о стабильности сети, уровне импульсных помех в ней.

При определении номинальной мощности суммируют мощности всех потребителей защищаемой сети. Для оценки мощности номинальной нагрузки токовую нагрузочную способность входного автомата умножают на 220 В.

При прочих равных условиях выбирают однофазные модели линейных стабилизаторов, учитывают, что модульные конструкции более удобны в обслуживании.

Учитывают эстетические параметры и количество выходных розеток, рисунок 5.

Рис.5. Вариант исполнения однофазного стабилизатора

Окончательный выбор целесообразно выполнять с учетом производителя и места изготовления. Для определения качества техники юго-восточного производства, выпускаемой без контроля со стороны ведущих западных компаний, имеет смысл изучить профильные форумы. Такой подход позволяет сделать адекватный вывод о качестве прибора.

Кроме технических параметров обязательно принимают во внимание доступность сервисного обслуживания. Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств

Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ

Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ.

Заключение.

Промышленность выпускает широкую гамму бытовых стабилизаторов напряжения, что позволяет произвести  выбор конкретной модели устройства с учетом конкретной области применения.

Массовый характер рынка стабилизаторов определяет большое количество работающих на нем производящих предприятий, предлагающих свою продукцию через партнерскую сеть. Поэтому перед покупкой следует выполнить тщательный многокритериальный отбор продукта.

Основные неисправности стабилизаторов

Причины неисправностей стабилизаторов напряжения условно можно разделить на две категории:

  • заводские дефекты и недостатки конструкции;
  • неправильная установка и эксплуатация стабилизатора.

Неисправностей, связанных с встроенными недочётами конструкции, несколько больше, чем с неправильной установкой. Но именно монтаж с нарушением требований чаще всего выводит стабилизатор из строя.

Любой из таких приборов пропускает через себя существенные токи в десятки ампер. Поэтому все они подвержены чрезмерному выделению тепловой энергии и нуждаются в хорошем и непрерывном охлаждении. О том, как установить стабилизатор правильно, тем самым продлив ему жизнь, можно почитать в его описании.

Ещё один вредоносный фактор – это наличие в устройстве стабилизатора (не каждого) большого количества подвижных элементов. К ним относятся электромеханические реле и сервоприводы. Механика не обладает повышенной надёжностью, поэтому очень часто именно она выводит прибор из строя.

Реле в стабилизаторе

Подключение однофазных потребителей

Наиболее рациональным подходом к электроснабжению частного дома будет выделение из общего числа потребителей обособленную группу, для которой требуются стабильные параметры напряжения. Как правило, повышенная стабильность требуется для телевизора, холодильника, офисной техники и средств связи. Другие бытовые приборы, особенно с нагревательными ТЭНами, вовсе необязательно подключать к стабилизатору. Электрочайники и электрические котлы все равно будут работать, поскольку перепады напряжения для них не играют решающей роли в выполнении основных функций.

В домашнем щитке после электросчетчика устанавливается защитное оборудование – дифференциальный автомат или УЗО с автоматическим выключателем. От них отдельными кабелями подводится фаза и ноль к входным клеммам стабилизатора. Корпус устройства также отдельным проводом подключается к шине РЕ, установленной в щитке. От выходных клемм стабилизатора к потребителю поступает фаза и рабочий ноль. Защитный ноль соединяется с шиной РЕ.

Следующий вариант предполагает подключение к стабилизатору сразу нескольких групп потребителей. В упрощенной схеме не используется защитное заземление, а стабилизатор подключается через одну клемму рабочего нуля. Работу схемы лучше всего рассматривать на примере трех групп потребителей.

Внутри распределительного щита, после всех защитных устройств, необходимо создать шину рабочего нуля, которая подключается ко всем потребителям, в том числе и к стабилизатору напряжения. Фазный провод ввода от защиты подключается к входной клемме устройства, а отходящий провод – к выходу. Второй конец фазного провода заводится в распределительный щиток, чтобы выполнить параллельное соединение нагрузок. Подключение всех групп потребителей осуществляется через автоматические выключатели.

При наличии в стабилизаторе двух клемм под рабочий ноль, в схеме возникнут следующие изменения:

  • Шина рабочего нуля остается соединенной с потребителями, но она уже не будет связана с защитными устройствами.
  • Нулевой провод от защитных устройств будет соединяться с входной клеммой рабочего нуля стабилизатора.

Шаг 3 – Производим подсоединение к электросети

На самом деле самостоятельно подключить стабилизатор напряжения к сети в доме довольно просто. Сзади устройства находится клеммная колодка на 5 разъемов. Обычно очередность подключения проводов следующая (слева направо): вводные фаза и ноль, заземление, фаза и ноль, идущие на нагрузку. На фото ниже Вы можете увидеть расположение разъемов:

Все, что Вам нужно, правильно выбрать сечение кабеля по мощности и току, после чего произвести монтаж своими руками, согласно схеме (для однофазного устройства):

Требования и рекомендации к подключению стабилизатора напряжения своими руками:

  1. Обязательно перед электромонтажными работами отключите электроэнергию на вводном щитке.
  2. Дополнительно защитите изделие автоматическим выключателем и УЗО, что продлит его срок службы. Установить автоматику рекомендуется после счетчика, но перед защитой от перенапряжения.
  3. Бытовая электросеть обязательно должна иметь заземляющий контур. Производить подключение без заземления запрещается из соображений электробезопасности.
  4. Установка стабилизатора напряжения в доме перед счетчиком запрещается, и добиться размещения защиты до прибора учета электричества очень сложно. Лучше производить монтаж так, как показано на схеме выше.
  5. Нельзя производить подключение аппарата сразу же после того, как Вы занесете его с мороза в дом. Пусть электроника «отойдет» и весь конденсат внутри испариться, иначе, как мы уже говорили Выше, срок службы устройства резко сократится. Сюда же можно отнести запрет на подключение изделия на улице.
  6. Защита, мощностью менее 5 кВт подключается напрямую к розетке. Такой вариант идеально подходит для гаража, загородного дома и дачи. Некоторые производят установку мобильного стабилизатора напряжения отдельно на компьютер, телевизор, котел, кондиционер, генератор либо стиральную машину, что позволяет защитить только определенный вид бытовой техники.
  7. Если Вам нужно подключить устройство защиты от перенапряжения в трехфазной сети, лучше купите три однофазных аппарата на 220в и подключите их по схеме звезда, чем один на 380 Вольт. Так Вы сэкономите деньги не только на покупке стабилизатора, но и на его ремонте (отремонтировать однофазное устройство на порядок дешевле, нежели трехфазное).
  8. После электромонтажных работ проверьте правильность подключения и установки, включив вводные автоматы на распределительном щите. Если ничего не гудит, не трещит и не искрит, значит, Вы все сделали правильно.
  9. Запрещается подключать устройство к нагрузке большей мощности. Запас мощности защиты должен составлять от 20 до 30%.
  10. Правильная схема монтажа обычно обозначена на корпусе продукции. В первую очередь ориентируйтесь на нее, но если подсказка от производителя отсутствует, рекомендуем производить подсоединение согласно данной инструкции. Все популярные модели (от фирм Ресанта, Лидер) следует подключить именно по этой технологии.

Вот и вся технология установки и подключения стабилизатора напряжения своими руками. Как Вы видите, ничего сложного нет, главное учитывать все требования и рекомендации. Напоследок хотелось бы отметить, что ежегодно Вы должны проверять надежность соединения проводов в клеммной колодке и при необходимости подтягивать винтики.

Принцип действия и конструктивные особенности стабилизаторов

Принцип работы стабилизирующих устройств заключается в следующем: входящая электроэнергия трансформируется, и на выходе появляется напряжение с необходимыми параметрами, питающее все подключенные бытовые приборы и оборудование.

В процессе трансформации стабилизатор может работать в режимах понижения амплитуды, простой передачи или повышения напряжения. Во втором случае происходит преобразование электроэнергии без изменения амплитуды. При этом происходят бесполезные затраты энергии, вызывающей нагрев оборудования. В связи с этим, некоторые модели имеют функцию байпаса. На корпусах таких приборов размещается переключатель, с помощью которого из работы выводится вся силовая часть оборудования. Обратным действием производится включение всех устройств.

Все стабилизаторы различаются между собой конструктивными особенностями и техническими характеристиками. В первую очередь, это мощность, пропускаемая через них, минимальное и максимальное значение величин на входе и другие дополнительные функции. Таким образом, можно выбрать модель, которая лучше всего подходит для конкретных условий потребителя. Питающие цепи и нагрузки могут быть подключены к стабилизаторам разными способами, в зависимости от конструкции и назначения этих устройств.

В каждой модели имеются клеммные выводы, позволяющие изменять конфигурацию подключений. При наличии в схеме защитного нуля подключение РЕ-проводника выполняется к средней клемме. Рабочие нулевые проводники соединяются с соседними выводами, а для коммутации фазных проводов используются крайние клеммы. Входные цепи подключаются на левой стороне, а выходные – на правой.

В случае отсутствия защитного нуля схема клеммника значительно упрощается. Рабочий ноль объединяется внутри корпуса, а цепи подключаются к трем контактам: фаза входа, общий рабочий ноль, фаза выхода. Самые простые модели малой мощности оборудуются шнуром и вилкой, а потребители подключаются напрямую к розетке, установленной на корпусе стабилизатора. Следует быть особенно внимательными, подключая провода в трехфазных стабилизаторах напряжения.

На что обратить внимание при выборе места установки

Размеры стабилизатора зависят от его выходной мощности. Использование небольших мобильных устройств вполне возможно непосредственно возле действующей электронной аппаратуры, прямо на столе. Для конструкций с большими размерами требуется стационарная установка в специально отведенных местах – на полу, на стенах или в оборудованных нишах.

Следует учитывать нагрев работающего трансформатора, в связи с чем требуется отведение тепла. Поэтому стабилизатор должен располагаться таким образом, чтобы с помощью вентиляционных отверстий обеспечивался максимальный воздухообмен внутри корпуса.

Рабочие характеристики стабилизатора могут снизиться под действием пыли, влажного воздуха, расположенных рядом горючих и легковоспламеняющихся жидкостей, а также повышенной температуры. Следует избегать вредных факторов и не устанавливать стабилизаторы в сырых подвалах, гаражах, неотапливаемых чердачных помещениях. Наиболее оптимальным вариантом расположения стабилизатора является место рядом с вводным распределительным щитком.

Стабилизатор напряжения – схема подключения

Всем известно, что существуют государственные стандарты, по которым производятся товары и предоставляются услуги. Не обошли стороной ГОСТы и такую услугу, как подача напряжения в жилые дома и на промышленные объекты. Так вот в стандартах строго оговорено, что напряжение может подаваться в определенных пределах, которые обусловлены диапазоном ±10% от номинального напряжения. И если говорить об однофазном напряжении, где номинал равен 220 В, то перепад его варьируется в пределах 198-242 вольта. То есть, это норма, которая закреплена стандартами. Но не все бытовые приборы могут корректно работать при минимальном или максимальном напряжении из данного диапазона, так что хотите вы того или нет, а многие обыватели стали устанавливать стабилизаторы напряжения. И тут у многих возникает вопрос его подключения своими руками, поэтому тема нашей статьи «стабилизатор напряжения – схема подключения».

Схема стабилизатора напряжения

Итак, начнем с перепадов напряжения, а именно, по каким причинам оно происходит. Если рассмотреть схему подачи электроэнергии к домам, то от подстанции оно по линиям электропередач доходит до каждого дома. И чем дальше стоит дом от подстанции, тем меньшего значения напряжение до него доходит. При этом на подстанции, как правило, установлен максимальный показатель (242 В). Но если нагрузка на каком-то потребителе возрастает, то на конце ЛЭП напряжение уже недотягивает до минимально допустимого значения (198 В). Кстати, точно так же работает и трехфазная линия.

Этот пример показывает стандартную ситуацию, которая ухудшается в зимнее время. Но исправить ее можно, и вариант пока существует один – это подключение в схему электрической разводки квартиры или частного дома стабилизатора напряжения.

Подключение в распределительном щитке

После автомата в щитке должен устанавливаться трехпозиционный переключатель. В положении 1 при поднятом вверх рычажке напряжение подается напрямую от сети, не используя стабилизатор напряжения. Этот режим используется в случае, если регулятор напряжения сломался или проводятся ревизионные работы.

В положении 2 при рычажке, направленном вниз, электричество идет через стабилизатор. В нулевом положении все приборы отключены и от стабилизатора, и от электросети.

Со щитка до выбранного места установки прокладываются два кабеля ВВГ. Для удобства их нужно промаркировать: вход на стабилизатор и выход. Часть изоляции зачищается с жил и подключается в электрощиток. Фаза со входа стабилизатора идет к выходному зажиму на дифавтомат. Фаза с выхода идет на контакт 2 на трехпозиционном выключателе. Нули и земли с обоих проводов включаются на соответствующие шины.

Последний шаг – питание автомата с клеммы 1 трехпозиционного прибора. Это также выполняется гибким монтажным кабелем.

Виды стабилизаторов напряжения

Релейные стабилизаторы напряжения

Релейные стабилизаторы получили наиболее широкое распространение из-за оптимального соотношения необходимых параметров и цены. Они имеют быстродействие от 0,2 до 0,5 с в зависимости от применяемых реле и величины скачка входного напряжения.

Из минусов – при переключении реле происходит скачок напряжения (5-15 Вольт в зависимости от количества ступеней переключения). Для техники это не существенно и безопасно, но свет будет моргать.

Поэтому при переключении стабилизатора может наблюдаться небольшое мигание лампочек накаливания. Схема релейного стабилизатора условно представлена ниже.

Релейный стабилизатор напряжения. Схема функциональная

Как и все современные стабилизаторы напряжения его основу составляет силовой трансформатор и электронный блок. Электронный блок релейного стабилизатора напряжения представляет собой микроконтроллер, в котором происходит анализ входного и выходного напряжения и вырабатываются сигналы для управления ключами или силовыми реле стабилизатора.

При формировании управляющего напряжения микроконтроллер учитывает время срабатывания ключей и силовых реле. Это позволяет производить переключения практически без разрывов. В результате форма напряжения на выходе релейного стабилизатора повторяет форму на входе.

 Электромеханические стабилизаторы напряжения

Другое название – стабилизаторы с сервоприводом, или автотрансформаторные.

Принцип их действия следующий: плата управления анализирует входное напряжение, и в зависимости от ситуации передает сигнал на сервомотор, расположенный внутри тороидальной катушки и это мотор передвигает на необходимое количество витков токосъемную щетку.

Электромеханический стабилизатор напряжения. Упрощенная схема

Такой принцип действия обеспечивают более высокую точность стабилизации (2-3%, по сравнению с релейными 5-8%).

Но скорость движения щетки ограничена возможностями мотора, чаще всего скорость добавления 10-15 Вольт/сек. При скачках напряжения на 30-40 Вольт, приборы могут оказаться под опасным напряжением на несколько секунд.

И еще стоит обратить внимание, у некоторых производителей, мотор сам питается от входного напряжения и поэтому когда происходит сильная просадка напряжения ему просто не хватает питания и происходит “зависание” стабилизатора. Но для света, это оптимальный выбор, свет хоть и будет “проседать” при скачках напряжения но не так сильно как у релейного и более мягко

Такой тип стабилизатора рекомендован в сети, где напряжение стабильно занижено или завышено, и нет резких скачков.

Тиристорные (симисторные) стабилизаторы напряжения

Принцип их работы основывается на автоматическом переключении секций (обмоток) автотрансформатора (или трансформатора) с помощью силовых ключей – тиристоров. Чем-то этот тип похож на релейные стабилизаторы, но в отличие от них не имеют контактной группы, имеют намного больше ступеней стабилизации и большую точность – от 2% до 5%.

Симисторный стабилизатор напряжения. Упрощенная схема

На схеме видно, что отводы трансформатора переключаются симисторами, и выходное напряжение меняется практически мгновенно – не более 0,1 с.

Комфорт использования  такого стабилизатора виден сразу – тишина в доме гарантирована.

Наибольшим минусом данного типа стабилизаторов напряжения – высокая цена.

Список источников

  • shematok.ru
  • www.asutpp.ru
  • amperof.ru
  • electricvdome.ru
  • samelectrik.ru
  • electric-220.ru
  • hochu-stroitsya.ru
  • SamElectric.ru
  • sovet-ingenera.com
  • electrobox.su
  • electricremont.ru

Похожие статьи

Комментировать
0
48 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector