4f3ec807194d5c792158641b34c6984a.jpg

5 монтаж воздушных линий электропередачи

СОДЕРЖАНИЕ
0
291 просмотров
11 февраля 2020

Типы и виды опор ЛЭП

В настоящее время для монтажа линий электроснабжения по воздуху применяются следующие типы опор ЛЭП, состоящие из стоек:

⇒ Промежуточные

являются наиболее распространенными и устанавливаются на прямых участках линий электропередач. Они используются для поддержания проводов и не предназначены для восприятия нагрузок от натяжения проводов вдоль линии.

⇒ Анкерные

устанавливаются на прямых участках линии электропередач, а также в местах перехода последних через естественные преграды или различные инженерные сооружения. Особенностью данного типа опор является жесткая и прочная конструкция, которая позволяет воспринимать значительную продольную нагрузку.

⇒ Угловые

устанавливаются при необходимости осуществить поворот трассы электропередачи на большой угол (при углах в пределах 30 градусов могут использоваться угловые промежуточные опоры). Если угол больше 30 градусов, то применяются специальные анкерные угловые опоры, которые имеют значительно более жесткую конструкцию, а крепление проводов осуществляется с помощью анкеров.

⇒ Концевые

устанавливаются в начале или конце линии электроснабжения и являются разновидностью анкерных опор ЛЭП. Их особенностью является восприятие нагрузки от натяжения проводов и тросов только в одном направлении.

В зависимости от напряжения опоры подразделяются:

  • Для низковольтных линий 0,4 кВ
  • Для высоковольтных линий 6, 10, 35 кВ и выше

В первом случае используются железобетонные стойки СВ-95, СВ-110 и деревянные пропитанные длиной 9,5 и 11 метров.

Чем выше напряжение ВЛ, тем более мощные и тяжелые опоры применяются, в том числе и металлические, и композитные. 

Назначение охранных зон ЛЭП

Основная задача введения подобных ограничений предотвратить прямые и косвенные факторы негативного воздействия электрического тока на человеческий организм. К первым относятся поражения электротоком при непосредственном контакте с проводом ВЛ или от шагового напряжения. При обрыве провода вероятность таких последствий довольно велика, поэтому для электромагистралей устанавливается зона отчуждения определенных размеров.

Под косвенными факторами подразумевается пагубные воздействия электрополя высокой напряженности. Еще в прошлом веке была установлена причастность электромагнитных излучений к развитию различных патологий в человеческом организме. У тех, кто проживает в зоне отчуждения ЛЭП, более подвержен риску развития дисфункций ЦНС, сердечнососудистых патологий, нарушений нейрогормональной регуляции и т.д.

По мере удаления от электромагистралей интенсивность электрополей в охранной зоне снижается, соответственно, уменьшается и их негативное воздействие.

Диаграмма распространения электромагнитных излучений возле опоры ЛЭП с напряжением 330-500 кВ

Такелажные и стропальные работы – меры обеспечения безопасности при работе рядом с ЛЭП

Данные виды работ предполагают разные ситуации, для которых прописаны свои требования и нормы. Рассмотрим их все по отдельности.

Перемещение груза с находящимися на нем людьми и только людей

Такие перемещения запрещены Правилами устройства грузоподъемных кранов и их эксплуатации.

Манипуляция может быть проведена в порядке исключения, когда выдана инструкция и получено согласование с органами российского Гостехнадзора.

При этом может использоваться только кран мостового типа и должна быть оборудована кабина, которая обеспечит полную безопасность людей. Требования по безопасности кабины разрабатываются отдельно.

Так как мостовые краны являются стационарными (с ограниченным передвижением), их вблизи ЛЭП не используют. А значит, данная манипуляция в рассматриваемой ситуации полностью исключается.

Кран мостового типа

Перемещение груза над строениями, внутри которых находятся люди

Над перекрытиями производственных, служебных и жилых помещений, в которых в данный момент могут находиться люди, перемещение грузов запрещено.

Мероприятие может быть организовано, но только после получения на то разрешения от органов Гостехнадзора, разработки соответствующих мероприятий, обеспечивающие полную безопасность людей и имущества.

Работа подъемного крана с грузом рядом с линиями электропередач: при такой плотной застройке соблюсти указанное ранее расстояние невозможно

Строповка грузов в стесненном пространстве

Кранам приходится работать не только на открытых площадках. Иногда работа выполняется в непосредственной близости от стен, колонн, станков, штабелей, железнодорожных вагонов. Не допускают нахождение людей в зоне между поднимаемым грузом и объектами.

Требование выполняется при подъеме и опускании груза.

Работа крана в непосредственной близости от строящегося дома

Определение опасных зон

Каждый рабочий, находящийся рядом с краном, должен быть проинформирован об опасных зонах, в которых нельзя находиться во время работы крана. Естественно, и крановщик ориентируется на эти зоны:

  1. Между строениями, штабелями, прочими препятствиями и поворотной башней крана должно соблюдаться минимальное расстояние в 1 метр.
  2. Опасными зонами также считаются участки, над которыми идет перемещение грузов. Определяются они как расстояние от крайней точки горизонтально построенной проекции наименьшего наружного габаритного размера груза, или от стены строения с прибавлением наибольшего габаритного размера груза, который падает, и минимального отлета груза в сторону при его падении.

Это все сложно понять при словесном описании, поэтому рассмотрите следующую картинку, на которой все показано наглядно.

Опасные зоны работы крана

Используя эти данные, производится расчет по формуле.

Строповка грузов на высоте

Чтобы обеспечить безопасность персонала и техники при строповке или расстроповке грузов на высоте, необходимо выполнить следующее:

  1. Применяются устройства автоматической и дистанционной строповки грузозахватных устройств.
  2. Рабочие места обеспечиваются всеми необходимыми средствами коллективной и индивидуальной защиты. К таковым относят леса, ограждения, подмостки, страховочные пояса и прочее.
  3. Укрупнительная сборка оборудования и различных конструкций, подъем которых будет осуществляться, выполняется на земле.
  4. Рабочие места, находящиеся на высоте, должны поддерживаться в надлежащем состоянии. На них не должно быть наледи, снега, мусора и посторонних предметов, которые могут помешать работе.

Схемы строповки различных грузов

Используйте на всех стадиях

Быстрые алгоритмы, сверхскоростные возможности расчета и оформления, работа с планом идеально подходят для ранних стадий проекта, когда остается еще много неопределенностей — например, при подготовке к тендерам с использованием приблизительного рельефа, при проектировании «с колес», когда от заказчика поступает множество изменений. Другие программные средства таких возможностей не предоставляют.

Model Studio CS позволяет создавать высокоточную и высококачественную информационную модель проектируемой воздушной линии и получать на ее основе проектную и рабочую документацию безупречного качества.

При реконструкции или ремонте вы можете быстро и качественно внести изменения в существующую документацию или, используя эту документацию как основу, перевыпустить новый проект по той же трассе.

Model Studio CS ЛЭП — это цельная программа, работающая по принципу «Установи и работай!»

Пересечение и сближение ВЛ с подземными трубопроводами

2.5.287. Угол пересечения ВЛ 35 кВ и ниже с подземными магистральными и промысловыми газопроводами, нефтепроводами, нефтепродуктопроводами, трубопроводами сжиженных углеводородных газов и аммиакопроводами* не нормируется.

* Газопроводы, нефтепроводы, нефтепродуктопроводы, трубопроводы снижения углеводородных газов, аммиакопроводы в дальнейшем именуются трубопроводами для транспорта горючих, жидкостей и газов; магистральные и промысловые трубопроводы в дальнейшем именуются магистральными трубопроводами.

Угол пересечения ВЛ 110 кB и выше с вновь сооружаемыми подземными магистральными трубопроводами для транспорта горючих жидкостей и газов, а также с действующими техническими коридорами этих трубопроводов должен быть не менее 60°.

Угол пересечения ВЛ с подземными газопроводами с избыточным давлением газа 1,2 МПа и менее, немагистральными нефтепроводами, нефтепродуктопроводами, трубопроводами сжиженных углеводородных газов и аммиакопроводами, а также с подземными трубопроводами для транспорта негорючих жидкостей и газов не нормируется.

2.5.288. Расстояния при пересечении, сближении и параллельном следовании ВЛ с подземными трубопроводами должны быть не менее приведенных в табл.2.5.40*.

* Взаимное расположение трубопроводов, их зданий, сооружений и наружных установок и ВЛ, входящих в состав трубопроводов, определяется ведомственными нормами.

Таблица 2.5.40. Наименьшие расстояния от ВЛ до подземных сетей.

Пересечение, сближение или параллельное следование

Наименьшее расстояние, м, при напряжении ВЛ, кВ

До 20

35

110

150

220

330

500

750

Расстояние по горизонтали:

1) при сближении и параллельном следовании от крайнего неотклоненного провода до любой части:

– магистральных нефтепроводов, нефтепродуктопроводов, аммиакопроводов, газопроводов с давлением газа свыше 1,2 МПа (магистральные газопроводы)

10

15

20

25

25

30

40

трубопроводов сжиженных углеводородных газов

Не менее 1000 м

2) при сближении и параллельном следовании в стесненных условиях и при пересечении от заземлителя или подземной части (фундаментов) опоры до любой части трубопроводов, указанных в п.1

5

5

10

10

10

15

25

25

3) при пересечении, сближении и параллельном следовании от заземлителя или подземной части (фундаментов) опоры:

– до немагистральных нефтепроводов, нефтепродуктопроводов, трубопроводов сжиженных углеводородных газов и аммиакопроводов и до газопроводов с давлением газа 1,2 МПа и менее

5

5

10

10

10

10

10

25

– до водопровода, канализации (напорной и самотечной), водостоков, дренажей тепловых сетей

2

2

3

3

3

3

3

10

В исключительных случаях допускается в процессе проектирования уменьшение до 50% расстояний (например, при прохождении ВЛ по территориям электростанций, промышленных предприятий, по улицам городов и т.п.), приведенных в п.3 табл.2.5.40 для газопроводов с давлением газа 1,2 МПа и менее.

При этом следует предусматривать защиту фундаментов опор ВЛ от возможного их подмыва при повреждении указанных трубопроводов, а также защиту, предотвращающую вынос опасных потенциалов на металлические трубопроводы.

В районах Западной Сибири и Крайнего Севера при параллельном следовании ВЛ 110 кВ и выше с техническими коридорами подземных магистральных трубопроводов для транспорта горючих жидкостей и газов расстояние от оси ВЛ до крайнего трубопровода должно быть не менее 1000 м.

2.5.289. Расстояния от крайних неотклоненных проводов ВЛ до продувочных свечей, устанавливаемых на газопроводах с давлением газа свыше 1,2 МПа (магистральных газопроводах), и до помещений со взрывоопасными зонами и наружных взрывоопасных установок КС, ГРС и НПС следует принимать как для надземных и наземных трубопроводов по 2.5.285 и по табл.2.5.39 соответственно.

2.5.290. Вновь сооружаемые подземные магистральные трубопроводы на участках сближения и параллельного следования с ВЛ при прокладке их на расстояниях менее приведенных в п.1 табл.2.5.40 должны иметь категорию:

  • для газопроводов и ВЛ 500 кВ и выше — не менее II;
  • для газопроводов и ВЛ 330 кВ и ниже — не менее III;
  • для нефтепроводов и ВЛ выше 1 кВ — не менее III.

Вновь сооружаемые подземные магистральные трубопроводы при пересечении с ВЛ в пределах охранной зоны ВЛ должны соответствовать строительным нормам и правилам.

Вновь сооружаемые подземные магистральные трубопроводы, прокладываемые в районах Западной Сибири и Крайнего Севера, при пересечении с ВЛ на расстоянии 1000 м в обе стороны от пересечения должны быть не ниже II категории, а в пределах охранной зоны ВЛ 500 кВ и выше — I категории.

Табличный редактор продольного профиля

Вы же понимаете, что удобная работа возможна только в среде, где одна и та же информация отображается многими способами? Поэтому в дополнение к информации на профиле мы разработали специальный инструмент — табличный редактор профиля.

Редактор представляет собой набор таблиц, наглядно отображающих данные модели рельефа трассы, перечень и порядок опор, перечень пересекаемых объектов и перечень насаждений вдоль трассы.

Этот инструмент не только позволяет отслеживать появление новых и изменение существующих данных модели проекта, но и предоставляет возможность редактировать профиль и информационную модель непосредственно через таблицы (рис. 6).

Рис. 6. Табличный редактор Model Studio CS
значительно упрощает работу проектировщика

Стальные многогранные опоры ЛЭП 110 кВ (проект 3.407.2-182.09 ЗАО ВНПО «РОСЛЭП»)

Стальные многогранные одноцепные опоры ПМ110-1Ф, ПМ110-1ФТ, ПМ110-1Ф4, ПМ110-3Ф, ПМ110-3ФТ, ПМ110-3Ф4, ПМ110-5Ф, ПМ110-5Ф4, ПМ110-7ФP, ПМ110-7Ф4P, АМ110-1Ф, АМ110-3Ф4, АМ110-3Ф4Т, АМ110-3Ф4+5, АМ110-5Ф4, АМ110-5Ф4Р и двухцепные опоры ПМ110-2Ф, ПМ110-2Ф4, ПМ110-4Ф, ПМ110-4Ф4Т, ПМ110-6Ф, ПМ110-6Ф4, ПМ110-8ФР, ПМ110-8Ф4Р, АМ110-2Ф, АМ110-4Ф4, АМ110-4Ф4Т, АМ110-4Ф4+5, АМ110-6Ф4, АМ110-6Ф4Р изготавливаются по типовому проекту 3.407.2-182.09 ЗАО ВНПО «РОСЛЭП» и предназначены для ЛЭП 110 кВ.

На опорах данного проекта предусмотрена подвеска сталеалюминевых проводов АС 120/19, АС 150/24, АС 185/29, АС 240/32, AERO-Z 177-1Z – 301-2Z и грозозащитного троса С50 (ТК 9,1). Опоры рассчитаны на применение подвесных стеклянных и полимерных изоляторов.

Расшифровка условного обозначения опор:

  • П – промежуточная, А – анкерная;
  • М – многогранная;
  • 110 – класс напряжения ВЛ;
  • 1…8 – номер модификации опоры и цепность;
  • Ф – фланцевое соединение с фундаментом;
  • 4 – с расширенной базой (отсутствие индекса указывает на узкобазную опору);
  • Р – с применением разрядников ОПН, Т – тросостойка на два грозотроса.

Классификация по материалам изготовления

Конструкции устанавливаются в различных климатических, геосейсмических условиях

При этом стоит обратить внимание, что многие типы опор предназначены для эксплуатации в условиях городской застройки. Таким образом в каждом из случаев требуется использовать подходящий материал для изготовления стоек

Деревянные опоры

Деревянные опоры ЛЭП широко распространены в условиях сельской местности, однако не стоит забывать, что соответствующие деревянные конструкции также применяются и на линиях вплоть до 220кВ.

Конструкции из дерева применяются чаще всего на линиях низшего напряжения, при этом они имеют ряд преимуществ:

  1. относительная долговечность (до 50 лет при соответствующей пропитке);
  2. небольшой вес;
  3. простота строительства и транспортировки;
  4. невысокая стоимость.

Железобетонные опоры

Железобетонные опоры устанавливаются на линиях напряжением менее 500 кВ. В основном это промежуточные опоры, не воспринимающие на себя нагрузку от тяжения проводов и тросов. В случае использования железобетонных стоек в качестве анкерных опор, их укрепляют укосами или оттяжками.

ЖБ опоры производятся из предварительно напряженного железобетона и имеют ряд преимуществ:

  1. несложные конструктивные особенности;
  2. не требуют сложной дополнительной сборки;
  3. не подвержены гниению, как деревянные опоры;
  4. в некоторых случаях возможна установка непосредственно в грунт;
  5. относительно несложное строительство линии.

Стальные опоры

Стальные опоры на линиях 0,4-10 кВ ставятся крайне редко. Их прерогатива это линии среднего напряжения и выше. Опоры из металла в основном используются в качестве анкерных, однако при напряжении сети более 110 кВ применяются и промежуточные стальные опоры.

Конструкции могут быть изготовлены как из профиля и уголков, так и методом проката, так как в освещении зачастую используются металлические опоры на основе труб. Среди преимуществ опор такого типа можно отметить их износостойкость и долговечность, а также возможность изготовления очень высоких конструкция для обеспечения безопасного перехода через инженерные сооружения и естественные преграды.

Промежуточные металлические опоры ЛЭП 110 кВ типа ПС 110, П 110

Унифицированные промежуточные металлические опоры П110-1В, П110-2В, П110-3В, П110-3ВУ, П110-4В, П110-4ВУ, П110-5В, П110-5ВПГ, П110-6В, П110-6ВПГ, П110-1В+4, П110-2В+4, П110-3В+4, П110-4В+4, П110-5В+4, П110-6В+4, ПС110-5В, ПС110-6В, ПС110-9В, ПС110-10В, ПС110-10В+1,3, ПС110-9ВПГ, ПС110-10ВПГ производятся согласно типового проекта № 11520тм-т1, опоры П110-1, П110-2, П110-3, П110-3У, П110-4, П110-4У, П110-5, П110-5ПГ, П110-6, П110-6ПГ, П110-7, П110-1+4, П110-2+4, П110-3+4, П110-4+4, П110-5+4, П110-6+4, ПС110-3, ПС110-4, ПС110-5, ПС110-6, ПС110-7 производятся согласно типового проекта № 3078тм-т9, опоры ПС110-9, ПС110-9ПГ, ПС110-10, ПС110-10+1,3, ПС110-10ПГ, ПС110-11, ПС110-11ПГ, ПУС110-1, ПУС110-2 производятся согласно типового проекта № 3079тм-т6, опоры ПС110-13 производятся согласно типового проекта № 3079тм-т5, опоры П110-1Н, П110-2Н, П110-3Н, П110-4Н, П110-5Н, П110-6Н, П110-7Н, ПС110-3Н, ПС110-4Н, ПС110-5Н, ПС110-6Н, ПС110-7Н, ПС110-9Н, ПС110-10Н, ПС110-11Н, ПС110-13Н производятся согласно типового проекта № 5778тм-т3, опоры ПВ110-3, ПВ110-9 производятся согласно типового проекта № 7079тм-т11, опоры П110-1, П110-1-3,2, П110-1-8,5, П110-2, П110-2-3,2, П110-2-8,5, П110-3, П110-3-3,2, П110-3-8,5 производятся согласно типового проекта 3.407.2-156, опоры П110-11, П110-11-5,4, П110-11-10,8, П110-11+5,4 производятся согласно типового проекта 3.407.2-165, опоры П110-1ПГ, П110-3ПГ, П110-4ПГ, П110-6ПГ, П110-11ПГ производятся согласно типового проекта 3.407.2-166, опоры П110-1, П110-1-3,2, П110-1-3,6, П110-1-8,5, П110-2, П110-2-3,2, П110-2-8,5, П110-3, П110-3-3,2, П110-3-3,6, П110-3-8,5, П110-4, П110-4-3,2, П110-4-8,5, П110-6, П110-6-3,2, П110-6-8,5 производятся согласно типового проекта 3.407.2-170, и используются для строительства воздушных ЛЭП 110 кВ.

Промежуточные опоры П110-4В, П110-4В+4

Фундаменты под опоры ВЛ 6-10 кВ

  • В «нормальных» грунтах для закрепления опор применяется фундамент из стальной трубы либо стальной винтовой сваи диаметром 219 или 325 мм. Фундамент опоры устанавливается в сверленый котлован, выполненный с помощью бурильной машины. Глубина котлована и диаметр трубы выбираются в зависимости от расчетных нагрузок на опору и физико-механических характеристик грунта. Толщина стенки труб свайных фундаментов выбирается исходя из воздействующего на трубу максимального расчетного опрокидывающего момента и марки стали, из которой изготовлена труба.
  • В болотистых грунтах строительство ВЛ выполняется в зимнее время, закрепление свайного фундамента из стальной трубы или стальной винтовой сваи осуществляется забиванием (либо вдавливанием) фундаментной трубы с открытым или конусным концом (либо, в случае винтовой сваи – ввинчиванием) с достижением подстилающих болото грунтов и заглублением в подстилающие грунты для обеспечения необходимой несущей способности фундамента опоры на опрокидывание.
  • В многолетнемерзлых грунтах закрепление опор достигается необходимым заглублением сваи из стальной трубы или стальной винтовой сваи, как правило, на глубину 5-9 метров. Закрепление в многолетнемерзлых грунтах рассчитывается как жесткое.

Порядок установления границ и размера охраняемой зоны ЛЭП

В нормативных документах указывается, что устанавливаться охранные зоны должны на всех электросетевых объектах в соответствии с текущими правилами безопасности.

По завершении описанной выше процедуры подается заявление в федеральную структуру, отвечающую за ведение кадастра. После рассмотрения заявки сведения об таких охранных коридорах вносятся в кадастр, после чего установление считается состоявшимся.

Ограничения.

Участки, через которые проходят ЛЭП не подлежат изъятию, но на их использование накладывается ряд обременений, необходимых для обеспечения безопасной работы энергосистем. К таковым ограничениям использования относится строительство объектов, производство определенных работ и другие действия, предусмотренные Правилами.

Владельцы или собственники таких участков вправе их продавать или сдавать в аренду.

Наличие обременений обязательно должно быть внесено в документы, подтверждающие право собственности. В качестве такового может выступать кадастровый паспорт или другой документ подтверждающий право собственности.

Основным ограничением в данном случае является запрет на возведение жилья. При получении соответствующего разрешения можно строить под ЛЭП хозяйственные объекты. Нарушение требований обременения влечет за собой административную ответственность в виде наложения штрафов, в установленных Законом размерах. Для физлиц это сумма соответствует 5-10 размерам минимальной зарплаты. Юридическим лицам придется заплатить штраф в размере 100-200 минимальных зарплатных ставок.

Перемещение груза несколькими кранами

Это сложная манипуляция, которую также может потребоваться выполнить рядом с линиями электропередач. Можно ее проводить только при непосредственном руководстве лицом, отвечающим за безопасность, выполняемых кранами.

Еще ориентируются на проект производства или технологическую карту, в которых приводятся допустимые схемы строповки, перемещения груза, применяемые меры безопасности и порядок проведения работы.

Важно! Перед работой необходимо рассчитать нагрузку, которая придется на каждый кран. Естественно, она не должна превышать максимально допустимые значения.. Рекомендуют применять однотипные краны и траверсы

Основная опасность возникает при неравномерном распределении нагрузок между кранами. Еще может произойти расцепление строп или раскачивание груза, ведь канаты часто находятся в наклонном положении

Рекомендуют применять однотипные краны и траверсы. Основная опасность возникает при неравномерном распределении нагрузок между кранами. Еще может произойти расцепление строп или раскачивание груза, ведь канаты часто находятся в наклонном положении.

Перед работами каждый крановщик инструктируется о скорости подъема груза, максимальной высоте и условных сигналах, которые будут применяться.

Расчет нагрузок на опоры и фундаменты

Программа Model Studio CS ЛЭП выполняет расчеты в момент установки опор на профиль и сразу отрисовывает кривые провеса провода. Иными словами, как только опоры установлены на профиль, вы можете видеть все результаты расчетов провода, нагрузки на опоры и т.д. Эти расчеты автоматически обновятся при перемещении опоры, ее замене на другую, замене провода или любом другом изменении (рис. 14). Скажем, вы поменяли заход ВЛ: с одной стороны анкерной опоры есть грозотрос, а с другой — нет. В расчете нагрузок это будет учтено немедленно.

Рис. 14. Расчет нагрузок на опоры и фундаменты

Как пример, иллюстрирующий уникальные возможности Model Studio CS ЛЭП, можно рассмотреть журнал проверочного расчета нагрузок на опоры и фундаменты (рис. 15).

Рис. 15. Результаты расчета нагрузок на фундамент в онлайн-режиме

В отчете детально описано всё — от тяжений провода до выбора расчетного режима и проверки максимального напряжения в нижнем поясе опоры. Такие возможности Model Studio CS позволяют снять любые сомнения в качестве расчетов и обеспечивают проектировщика неопровержимыми аргументами в защиту его решений.

Что называется охранной зоной воздушной ЛЭП?

По сути, это условный пространственный коридор, внутри которого расположена ВЛ (воздушная линия). Высота коридора равна длине опоры ЛЭП, а ширина охранной зоны определяется расстоянием от двух вертикальных проекций от внешних проводов (h на рис.1).

Наглядное представление охранной зоны

Характерно, что ширина зоны ЛЭП, при ее прохождении над водной поверхностью, больше чем на суше. Подробно о размерах охранных зон будет рассказано в разделе об их границах установления.

Подобные санитарно-защитные зоны предусматриваются и для других электросетевых объектов, например, электрических подстанций и подземных КЛЭ (кабельные линии электропередач).

Охранная зона КЛЭ

Обозначения:

  • H – Глубина залегания подземной электромагистрали.
  • L – Расстояние от электромагстрали до края зоны отчуждения.

Расчет монтажных стрел и тяжений провода и троса

Механический расчет проводов и тросов, строго соответствующий требованиям ПУЭ-7, выполняется с учетом свойств провода, климатических нагрузок, нагрузок от арматуры крепления, гирлянд и иного оборудования.

Высокоточная кривая рассчитывается уравнением цепной линии, что повышает точность результатов расчета — это важно при расчете больших переходов. Подсистема расчета позволяет просматривать все расчетные режимы

Предусмотрена возможность добавления дополнительных расчетных режимов или корректировки существующих.

Расчет по-настоящему интерактивен и осуществляется в режиме реального времени: при отрисовке провода автоматически выполненный расчет обновляется при каждом изменении условий. Например, при перемещении или изменении типа и марки опор происходят мгновенный перерасчет и перестроение кривых провисания.

По результатам механического расчета определяются монтажные стрелы и тяжения провода. Документатор программы позволяет получить отчет по монтажным стрелам и тяжениям с любой градацией по температуре, а также формирует отдельные и совместные отчеты для проводов и тросов (рис. 1).

Рис. 1. Отчет по расчету монтажных стрел провеса и тяжений провода и троса

Металлические опоры ЛЭП

Для воздушных линий электропередачи большой мощности и сверх высоких токов, используются металлические опоры. Несмотря на то, что этот вид опор изготавливают из специальной стали, они «боятся» коррозии и для защиты от неё опоры из металла покрывают антикоррозийным составом. В зависимости от размеров опоры, металлическая опора может быть сборной или сварной. Сборную опору доставляют на место раздельно.

По месту собирают и устанавливают на заранее подготовленный фундамент. Установка опоры металлической, сложный технологический процесс, с применением тяговых механизмов, обычно тракторов. К фундаменту опора крепится болтами, предварительно выравниваясь по строгой вертикали. Металлические опоры практически не находят применение в частном домостроении и в загородных товариществах различного типа, за исключением круглых металлических столбов.

Конструкций металлических опор настолько много, что пришлось написать отдельную статью: Металлические опоры и их конструкции.

Elesant.ru

Другие статьи раздела “Воздушные линии электропередачи”

  • Виды опор линий электропередачи по материалу

  • Виды опор по назначению

  • Воздушные линии электропередачи проводами СИП

  • Деревянные опоры воздушных линий электропередачи

  • Железобетонные опоры линий электропередачи

  • Железобетонные опоры линий электропередачи

  • Конструкции опор линий электропередачи

  • Натяжение проводов воздушной линии электропередачи

  • Ошибки монтажа СИП, которые нельзя допускать

  • Подготовительные работы для монтажа воздушных линий электропередачи

Конструкции железобетонных опор

Железобетонные опоры по конструкции схожи с конструкцией деревянных опор. Вернее будет сказать, их конструкции полностью совпадает. Приведу пример конструкции железобетонной опоры для ЛЭП 6-10-16 кВ.

Эти опоры вполне можно назвать Л-образные. По конструкции это две стойки, установленные под углом 19°-20°. На одной стойке для устойчивости, устанавливается ригель, на второй стойке опорная плита. Применяются Л-образные опоры как анкерные и угловые опоры.

В завершении скажу, что конструкции и виды опор по назначению должны быть указаны в проекте ВЛИ и точно ему соответствовать.

Elesant.ru

Другие статьи раздела: Воздушные линии электропередачи

  • Виды опор линий электропередачи по материалу

  • Виды опор по назначению

  • Воздушные линии электропередачи проводами СИП

  • Деревянные опоры воздушных линий электропередачи

  • Железобетонные опоры линий электропередачи

  • Железобетонные опоры линий электропередачи

  • Конструкции опор линий электропередачи

  • Натяжение проводов воздушной линии электропередачи

  • Ошибки монтажа СИП, которые нельзя допускать

  • Подготовительные работы для монтажа воздушных линий электропередачи

Послушное поведение разумных опор

Проектирование — это множество итераций принятия решений, а значит, одним из самых сложных моментов является внесение изменений.

Специально для решения этой задачи в Model Studio CS реализовано настоящее интерактивное проектирование — ничего подобного нет ни в одной другой программе по всему миру! Любое решение проектировщика может быть мгновенно реализовано. Model Studio CS позволяет производить в реальном времени любые операции с опорами: передвигать их, удалять, добавлять новые, изменять тип и марку и т.д. При этом сразу же обновляются все расчеты и характеристики связанных объектов, а кроме того, автоматически выполняется всё необходимое оформление.

Например, для перемещения достаточно указать опору и передвинуть ее за «ручку» либо задать длины пролетов с клавиатуры (рис. 5). В результате автоматически обновятся исходные данные, расчеты и оформление. Так воплощается мечта проектировщиков об умном и быстром помощнике, работающем по стандартам, не задающем лишних вопросов и реализующем инженерную мысль.

Рис. 5. Перемещение опор в реальном времени

Этапы установки опор линий электропередачи

Еще на этапе подготовительных работ, производится прокладка трассы ЛЭП: очистка трассы, выравнивание земли и другие работы.

Разметка трассы производятся строго в соответствии с проектом. При разметке, отмечаются места установки опор, а также их развозка по местам установки. В зависимости от конструкции опор они могут поставляться в разобранном или собранном виде. Разобранные опоры собираются рядом с местом установки. На собранную опору навешиваются нужные траверсы и другое линейное оборудование.

Перед сборкой опор или параллельно со сборкой, копаются котлованы или ямы для установки опор. Конструкция котлованов и размеры ям, также, прописаны, в проекте. Для магистральных ЛЭП и ВЛИ котлованы и ямы не копаются вручную. Для этого используются буровые установки.

Металлические опоры ставятся на заранее сделанные фундаменты из бетона. Деревянные опоры и железобетонные опоры для ЛЭП 0,4-6 кВ устанавливаются без фундамента. Для укрепления устойчивости опоры на конец опоры в земле ставится поперечная консоль (правда не всегда). Для ЛЭП 6-10 кВ устанавливаются без фундамента, но с поверхностной заливкой опоры бетоном. Опоры ЛЭП 35-500 кВ устанавливаются с крышкой на торце опоры вкопанном в землю (для усиления опоры) и заливкой опоры в грунте и основания опоры бетоном. Исключения могут составить опорные фермы в виде буквы «П».

а-Промежуточная опора; b- анкерна опора с подкосом, ставят на углах поворота ЛЭП от 20 до 90 градусов. 10Опора, 5-подкос (подопора)     

Обычная конструкция ямы для деревянной и бетонной опоры ЛЭП до 1 кВ имеют цилиндрическую форму, глубиной 1100-1500 мм и диаметром на 100 мм шире размеров опоры. Делаются такие ямы при помощи буровых установок. 

Примечание: В стесненных условиях, а также при малых объемах, яму под опору можно вырыть вручную. Профиль ямы должен быть не цилиндрическим, а ступенчатым. 

Деревянные опоры

Изготавливаются, как правило, из сосновых бревен со снятой корой. Для ЛЭП с напряжением питания до 1000 В допускается применение и других пород деревьев, например, пихта, дуб, кедр, ель, лиственница. Бревна, которые впоследствии должны будут стать опорами линий электропередач, должны соответствовать определенным техническим требованиям. Естественная конусность ствола, проще говоря, изменение его диаметра от толстого нижнего конца (комля) к верхнему отрубу не должна превышать 8 мм на 1 метр длины бревна. Диаметр бревна на верхнем отрубе для линий с напряжением до 1000 В принимается не менее 12 см, для линий с напряжением выше 1000 В, но не выше 35 кВ – 16 см, а для линий с более высоким напряжением не менее 18 см.

Деревянные опоры могут применять для сооружения воздушных линий с напряжением не выше 110 кВ включительно. Наиболее широкое распространение деревянные опоры получили в воздушных линиях с напряжением до 1000 В, а также в линиях связи. Плюсом деревянных опор есть их относительно небольшая стоимость и простота изготовления. Однако есть и минус, существенный минус – они подвержены гниению и срок службы сосновых опор составляет порядка 4-5 лет. Для предохранения древесины от гниения ее пропитывают специальными антисептиками против гниения, например антраценовым или креозотовым маслом. Особенно тщательной обработке поддаются те части, которые будут вкапываться в землю, а также врубки концов, раскосов и траверс. Благодаря антисептикам срок службы увеличивается примерно в 2-3 раза. Для этой же цели довольно часто ноги деревянной электроопоры изготавливают из двух частей – основной стойки и стула (пасынка):

Где – 1) основная стойка, а 2) стул (пасынок)

При сильном загнивании нижней части достаточно сменить только пасынка.

Список источников

  • www.asutpp.ru
  • sapr.ru
  • elesant.ru
  • Proekt-sam.ru
  • elektropostavka.ru
  • www.elsi.ru
  • elenergi.ru
  • www.elec.ru
  • stroimontajbur.ru
  • LinijaOpory.ru

Похожие статьи

Комментировать
0
291 просмотров

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами?

Adblock
detector